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Rate Processes in Dissipative Systems: 50 Years after Kramers

Discussion Meeting of the Deutsche Bunsen-Gesellschaft fiir Physikalische Chemie
under the auspices of the Deutsche Physikalische Gesellschaft
NATO Advanced Research Workshop (ARW, 890521)

Reactive processes often take place in the presence of ran-
dom interactions of the reacting system with its environ-
ment. The article by H. A. Kramers, published in April 1940
in. Physica, Vol: VII, pages 284 —304, represented a; mile-
stone in the quantitative analysis. It provides a descrlptlon
for the “low damping” and the “high damping” range. It
includes such important theories as the transition state the-
ory or the Smoluchowski model of diffusion-controlled
processes. Since phenomera of the considered kind are en-
countered in many places in physics, chemistry and mole-
cular biology, it appeared most appropriate to bring to-
gether scientists from these different fields at the occasion
of the fiftieth anniversary of Kramers’ seminal paper. The
goal of the endeavor was to compare the progress of formal
solutions of the Kramers problem, to identify the common
principles and the specific differences of the varlous fields of
application, -

By its multidisciplinary character, this discussion meeting
brought together colleagues from such distant fields as pho-
tobiology, high pressure chemical kinetics, iow temperature

diffusion and Josephson junctions. The participation was
really international, 15 countries being represented. The or-
ganizers are grateful to those organisations, which helped
with financial support such as NATO, the DFG, and the
Office of Naval Research (USA), the Evangelische Akademie
at Tutzing, which provided the most beautiful facilities of
Tutzing castle, good weather, and competent staff, their co-
workers, who assured a smooth progress of the meeting, the
musicians, who concluded the program with a heartening
concert, and, last not least, all colleagues, who came and
took part in the lively discussions.

B. J. Berne (New York), H. Grabert (Essen}, P. Hdinggi
(Augsburg), E. Pollak (Rehovot), and J. Troe (Gdttingen)

Obviously, the present dlSCUSSlOI] meeting should also re-
member the person of H. A. Kramers. We are grateful that
Professor N. G. van Kampen, a former student of Kramers,
undertook this task and presented the followmg dinner
speech.

Peter Hiinggi, Jiirgen Troe

Remembering Kramers
(Dinner Speech)

N. G. van Kampen
Instituut voor Theoretische Fysica, Rijksuniversiteit te Utiecht, Postbus 80006, 3508 TA Utrecht, The Netherlands

This dinner speech, presented at the Discussion Meeting “50 years after Kramers™, describes personal
-~ memories to H. A. Kramers.

Ladies and gentlemen,

A good paper begins by formulating the problem. Let me
tell you my problem. In a letter sent to me by the organizers
of this conference I was asked, and 1 quote. “to present a
dinner speech covering a historical overview of the life and
impact of Kramers’ work. In view of your connection with
the family of Kramers the organizers feel that you would be
the most appropriate person to present such a talk™.

What I am supposed to do? To deal with his work — in
historical perspective - would make it a very long dinner.
Kramers was still one of those physicists who felt that the

Ber. Bunsenges. Phys. Chem 93 1994, No. 3
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whole of physics was their field rather than succumbing to
the modern pressure to specialize. To deal with his life would
amount to reciting parts of the biography written by Max
Dresden [1], who has made a thorough study of it. So what
am I supposed to do? In this dilemma 1 have chosen the
golden mean, and shall talk about myself.

When Kramers wrote his paper on Browman motion 1n
1940 I did not know him yet. Only in 1945, after the war,
was it possible for me to go to his lectures without risk of
life and limb. Unfortunately I was not very assiduous, be-
cause the newly recovered freedom gave birth to an exu-

YUUS-9021,91,U303-0225 S 3.50 +.25,0
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“berant student’s life. Once I-had a celebration that lasted all
night and after I came home in the morning I dreamt that
I was at a lecture, listening to Kramers. Unfortunately, when
T woke up it turned out to be true. In an audience of six
‘that cannot go unnoticed. But when I met Kramers later
that day. in the street he merely asked me mildly when 1
intended.to begin studying seriously.

His own teacher Ehrenfest had been more drastic. He
refused to accept Kramers as a Ph. D, student because Kra-

mers had. occasionally skipped a lecture. He told him to.

become a. high-school teacher, Although in those days that
was quite a respectable position, in the eyes of Ehrenfest it
was the bottom rung of the scientific ladder. Kramers did
become a teacher, but his mind was not in it: He often
arrived late. When the rector of the school expressed his
displeasure he answered: Don't forget that I teach them in
half an hour as much as you do in an hour. Nonetheless
the same rector helped him to get away and try his luck as
a research physicist in Copenhagen.

The purpose of the anecdote about my falling asleep is to
allow you to discount what I am now going to say. In my
experience Kramers was not a good lecturer, He was think-
ing of too many aspects of his subject, and he would not
simplify as a first approximation suitable for students, This
became painfullyclear in a series of popular lectures he gave
in the fall of 1945, Also his book on quantum mechanics,
on which he spent so much energy, failed as a textbook. It
contains numerous treasures, but a beginning student can
easily get drowned in it — I can tell you. A case in,point is
the way he treats field quantization. He conscientiously ex-
plains it as a change in representation, but then dismisses
the by no means simple algebra as too trivial to bother
about. That is a pity: if the book had been more pedagogical
it might have prevented the prevailing misconception of sec-
ond quantization among field theorists.

Kramers was not an argumentative debater, on the con-
trary. When you would bring up a point of discussion, either
in physics or otherwise, he would listen attentively, think
about it, and carefully formulate an answer. No wonder that
he was universally liked and trusted — although it js true
that sometimes his answer would be couched in rather sib-
ylline terms and those who knew them could detect an ironic
twinkling in his eyes. Once he told me that in his opinion
one should give every person a religion that did not fit him.
At the time I took it to mean that one should try to keep
the balance, but later I realized that he may also have meant
something entirely different. No wonder either, that his as-
sistance was often requested when a difficult situation arose
and feclings got excited. Unfortunately that sometimes
meant a heavy toll on his time and energy, as in the following
case,

In 1946 he was appointed by the government as a sci-
entific advisor and alternate to the Dutch representative in
the Atomic Energy Committee of the United Nations. While
serving in that capacity he was elected as chairman of the
Scientific and Technological Subcommittee, against the op-
position of Gromyko. He managed to gently steer the sub-
commuttee to a satisfactory conclusion in the form of a unan-

imous report. ] am proud to know that the same mild way
of remonstrating used earlier to get me back to work was
also instrumental in subduing Gromyké. The subcommit-
tee’s report later disappeared in the political hassle, which
goes to show that one should never waste one’s time on
committees set.up by politicians.

Let me go back to the year 1916, when Kramers, not yet
22 years old, took the train to Copenhagen, to study with
Niels Bohr. There he remained 10 years, wrote a Ph. D.
thesis, married a Danish wife, and played a pivotal role in
the development of quantum mechanics. In 1924 and 1925
he managed by means of an unparalleled tour de force to
construct a quantum mechanical formula for the scattering
of light by an atom, even though quantum mechanics did
not yet exist, He did this by an inimitable combination of
knowledge and insight; others might say by hook and by
crook. It was published in a paper, which I am. afraid few
people have ever understood — but for the resulting for-
mula. Although the paper carried the name of Heisenberg
as joint author it was very much Kramers’ work, The im-
portance of this Kfamers-Heisenberg dispersion formula
was not confined to the special problem of light scattering,
It served as a stepping stone from which Heisenberg arrived
at the general formulation of quantum mechanics, and
thereby stole the show. Kramers’ role in the early devel-
opment of quantum mechanics is often forgotten. I hope
that Dresden’s book will be instrumental in putting the rec-
ord straight,

Yet Kramers was never satisfied by the way in which
quantum mechanics treats the interaction between the elec-
tron and the electromagnetic field. Each electron, when con-
sidered as a point particle, is surrounded by a field of infinite
strength and infinite energy, namely its own electrostatic
field. This appeared already .in the classical theory of Lor-
entz. Lorentz eliminated the infinite energy by adding it to
the bare mass of the electron to give a combined mass —
which is the mass observed in experiments. Kramers® aim
was to eliminate the entire self field of the eiectron by treat-
ing it as part and parcel of the electron. He gave a talk
about his idea at the Shelter Island conference in 1947 and
thereby launched the idea of renormalization in quantum
mechanics. This idea caught fire, and Bethe, on his way
home, applied it in a rough calculation of the radiative cor-
rection of the energy levels of an atom. “He works so much
faster than I”, Kramers once ruefully said to me, but then
his own aim was more ambitious and, moreover, he was
overburdened by his duties in the AEC. And his health was
beginning to fail.

He ended up by dumping his calculations into my lap as
a subject for my :hesis. At first I was rather overwhelmed
by all these yellow pad sheets covered with calculations
without text. At the time it was not customary to bother
your professor and of course Kramers had many other ob-
ligations, so we talked about it roughly once every six weeks.

Nor should one eapect to be encouraged by approbation
or praise. | remember that once Kramers said to me that
he had received some reprints from de Broglie, since he was
going to visit Paris, he asked me to read them and tell him
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the contents. After a week’s struggle I gave up and told him
that either 1 was a fool or de Broglie. He replied that he
guessed that it was de Broglie. This was the only explicit
expression of appreciation I received during my thesis work.
Nonetheless he managed to convey the feeling of a shared
effort and a common aim, which was more stimulating than
‘words ofspraise, and did more to create ties of friendship.

In 1950 Kramers arranged for me to go to the Niels Bohr
Institute. The international community of scientists was tre-
mendously stimulating, but the contact with my thesis ad-
visor was reduced to his occasional visits to Denmark. Once,
while he spent a short vacation at Boht’s cottage at Tisvilde,
he asked me to come.there for the weekend to discuss my
work. When I arrived on bicycle from Copenhagen, he said:
you are tired and hot, let ue first go for a swim. We went
to the beach, walked into the sea, but by the time the water
had reached my navel Kramers said; in your chapter 1V
about the Raman effect... And so we stood there discussing
for a long time. Although I never thought that scientific
discussions should be confined to office hours and appro-
priate surroundings, it had not occurred to me that I would
have to defend my thesis halfway submerged in the Kattegat.

In 1926 Kramers returned to the Netherlands to become
a professor at Utrecht, He became more concerned with the
applications of quantum mechanics to various fields, such
as solid state and in particular magnetism. I cannot review
these many and varied topics he dealt with, but let me men-
tion as a few highlights: the Kramers-Kronig relations, the
transfer matrix, and the work on polymers. The publications
can all be found in the Collected Works.

It is a pity that Dresden’s book had no room for all this,
although a short account has appeared in Physics Today,
September 1988. Allow me to insert here a word of criticism
addressed at Dresden. He emphasizes that in many subjects
Kramers did all the groundwork but failed to make the
decisive step. There is a grain of truth in it, but to consider
that as a basic flaw of Kramers as a physicist seems to me
unfair. Does one blame Lorentz for not taking the final step
to relativity? Einstein for not going on to discover quantum
mechanics? Columbus for stopping half way on his voyage
to India? Rather 1 think that it is in the nature of things
that those who laboriously lay the foundations for the new
development no longer have the freshness of mind needed
to discern an entirely new approach.

When 1n 1934 Kramers was appointed in Leiden as the
successor to Ehrenfest his interest in statistical mechanics
was already fully developed. He admired the mathematical
elegance of the Gibbs approach, but was equally conversant
with the more physical ideas of Boltzmann and Ehrenfest.
His views are reflected in the textbook that his student ter
Haar wrote in 1954. It is in the vein of the Boltzmann ap-
proach that he wrote down the equation for the probability
density in phase space of a Brownian particle in a field of
force and formulated the escape problem. The motivation
was that this might describe chemical dissociation, as sug-
gested by Christiansen, and perhaps also the recently dis-
covered nuclear fusion. But it s clear that these applications
mainly serve as an excuse, and that Kramers is fuscinated

by the mathematical problem. Much is said about it during
this meeting and I only want to make a few comments.

No potential having a well and a barrier is known for
which the Kramers equation can be solved analytically. The
game is therefore to disign an approximation method. The
remarkable thing is that Kramers appears to have done
almost everything that can be done. Although his results
are not as complete as one might wish, the half century since
his paper was published has taught us that it is very hard
to find essential improvements. It is a typical Kramers paper,
containing many gems, but as a whole somewhat confusing,
It needs a careful perusal and that may well be the reason
that it was not well known for many years.

The first gem is the discovery of the curious fact that it
is sufficient to investigate the stationary case, even though
one is interested in a decay rate. Note that this is not an
approximation, but is precisely correct within the margin of
uncertainty inherent in the very concept of escape time.

The second gem is that in the limit of large friction the
equation reduces to a diffusion equation in coordinate space
alone. This requires the elimination of the momentum of the
particle, which Kramers achieved by means of an ingenious
step. This has now become an industry under the title “ad-
jabatic elimination of fast variables”,

Thirdly, having obtained this one-dimensional diffusion
equation Kramers found the mean first-passage time by de-
riving a formula for it, which is now common knowledge,
aithough it is occasionally rediscovered.

In order to treat the case that the friction is not large he
used a fourth ingredient: he decomposed the range of the
coordinate into one region around the top of the potential
barrier, and another region covering the potential well, This
has now become a standard trick of singular perturbation
theory. It enables one to apply different expansions in both
regions, provided one can fit them smoothly together so as
to get an approximation that covers the whole range.

The fifth ingredient is a real gem: the very ingenious con-
struction of a solution in the barrier region. It is true that
this is only one special solution, but it is precisely the one
he needs: no incident particles from infinity, and thermal
equilibrium on the side of the well. Hence it can be attached
smoothly to the equilibrium distribution inside the well.
Kramers also realized that for very small friction the fluc-
tuations might not be able to maintain the equilibrium in
the well; rather the leakage across the barrier would deplete
the high energy tail of the distribution. For this case he
introduced his sixth device. In the limit of low friction the
particle in the well oscillates roughly with a constant energy.
It is therefore possible to average out the phase. This leads
to a one-dimensional diffusion equation in the energy scale,
from which it is easy to compute the average time needed
to reach the energy of the top of the barrier.

There are two difficulties with this low friction limit. First
1t 15 manifestly correct if the barrier is a sharp cusp, but if
it has a smooth top the motion near the top is slow and
phase averaging is problematic. The second difficulty is that
there is no bridge between this result and the previous one
for large and intermediate frivtion. Kramers confesses that
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.he has-not found-it. Many authors have tried, and'it.is-the
task.of this conference to decide whether tris bridge now
-exists.
‘Kramers machte es alleine
- 'Wir machen es zusammen,
Denn wir sind nur kleine!

Reference

[17 M: Dresden, “H. A. Kramers. Between Tradjtion and Revo-
lution?, Springer-Verlag, New York, Berlin, Heidelberg 1987.

On the Application of Kramers’ Theory to Elementary Chemical Reactions

J. Troe
Max-Planck-Institut-fiir biophysikalische Chemie, Am FaBberg, D-3400 Géttingen, Germany

Chemical Kinetics | Elementary Reactions | Energy Transfer | Statistical Mechanics

Kramers' diffusion model in the energy controlled low viscosity and the.momentum controlled high

viscosity range is confronted with reality for eleméntary unimolecular reactions and radical associations

in dense media. Collisional energy transfer appears to be much more complicated than-described by the

idealized model. On the other hand, there are examples where the Kramers-Smoluchowski equation well

describes the-transition to high viscosity behavior. In other cases, solvent shifts of the reaction barriers
are pronounced and superimposed on the transport effects-described by Kramers' model,

1. Introduction

H. A. Kramers' article of 1940 [1], on Brownian motion
in a force field and the diffusion model of chemical reactions,
presents a milestone in studies of medium influences on rates
of chemical reactions. In particular, our own program of
studying elementary reactions over-wide density ranges in
the same solvent [2,3], from low pressure gas via high pres-
sure liquid phase into solid environments, has followed Kra-
mers' concept very closely. For selectéd cases, experiments
of this type are available now, such that one may ask to
what extent.the idealized Kramers model applies, or where
more complicated situations are encountered in reality. Kra-
mers’ discussion clearly distinguishes between the small and
large viscosity ranges, the former being characterized by a
diffusion equation of the Fokker-Planck-type on the energy
scale, the latter on the reaction coordinate. The following
article briefly reviews which complications in reality arise in
the low and high damping regimes which leave a lot of
unsolved uncertainties beyond the formal solution of the
Kramers problem.

2. Unsolved Problems in the Low Damping Range

In the gas phase low pressure limit of unimolecular iso-
merization, dissociation, and the reverse termolecular as-
sociation reactions obviously the rate determining individ-
ual collisional énergy transfer process is of central impor-
tance. Detailed experiments [4, 5] of this process have shown
that it cannot be related to a macroscopic viscosity in the
way initially suggested by Kramers. Trajectory calculations
[6] have revealed its highly irregular character. Furthermore
it has been shown that, although the diffusion theory [7—9]
provides a useful limiting description for inefficient colli-
sional energy trausfer (average energy transfer | (AE”) <
kT), in reality more efficient collisions operate. Therefore,
the diffuston treatment has to be generalized by solutions of

Ber. Bunsenges. Phys. Chem. 95 (1991 No. 3
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the complete master equation. Sometimes, there are very
strong and relatively weak energy transfer contributions
which operate simultaneously in one system [10): In addi-
tion, two-dimensional master equations have to be solved
on the energy and angular momentum scales [9, 11-14],
such that even the formal treatment of the diffusion problem
on these two scales is nontrivial, apart from the difficulties
of understanding state-to-state collisional energy transfer
cross-sections. In this sense, the low damping-small viscosity
treatment of Kramers in chemical applications has to be
replaced by far more complicated considerations.

In the following we briefly review additional mechanistic
complications which may occur in the combination of atoms
with atoms and with small polyatomic molecules. In this
case, there are activation-deactivation pathways which often
dominate the low temperature reaction and which are not
included in a diffusion model at all. The related problems
deserve much more attention from the side of theory and
are, therefore, emphasized in the following. The mechanisms
considered probably involve major contributions from sol-
vent-reactant van der Waals clusters. Furthermore, since the
reactants are open shell species, larger numbers of electronic
states may contribute with collision-induced and cluster-
enharced nonadiabatic tr.nsitions between these states. Be-
cause these effects vary over the low to high damping tran-
sition of the Kramers problem, they require careful attention
besides the transport aspects discussed in the Kramers
model.

As an example, we consider the ozone forming combi-
nation

O+0,+M=0;+ M 1,-1)

and the reverse ozone dissociation. In the limiting low pres-
sure range in the gas phase, the third order rate coefficient
has a very strong temperature dependence [15] ( see Figs.

0005-9021,91,0303-0228 § 3.50 + 25,0
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Fig. 1

Low pressure third order rate coefficients ko/[Ar] of the recombi-
nation-O + Oy + Ar-— O; + Ar-(closed-circles: recombination
expcnments. see Ref. [15]; open circles: converted from dissociation
c:(penmcnts, see Ref. [15]; dashed line: from calculated strong col-
lision unimolecular rate coefficients, see Ref, [16)
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As Fig. 1, for the recombination O + O, + He — O; + He
(symbols as in Fig. 1, see Ref. [15])

1 and 2, for M = Ar and He respectively). Fig. 1 includes .

theoretical rate calculations [9,16] for the strong collision
limit (]/—;&E > > kT). At T > 1000 K, the experimental
rate coefficients are about a factor of 100 below the strong
collision calculation such that the diffusion limit of the en-
ergy transfer mechanism seems to apply. However, with de-
creasing temperature the rate coefficient rises much stronger
than any collisional energy transfer model [4-6] would

predict.-At low temperatures it markedly exceeds the strong
collison calculation. These observations suggest dominant
contributions from the radical complex mechanism involv-

_ ing steps like

O+ M=0OM 2,-2)

OM + 0, ==0; + M (3,-3)
and/or contributions involving shallow excited electronic
states of Oj, see below, Before the contributing species and
states are well characterized by quantum-chemical calcula-
tions or separate experiments, the components of the reac-
tion in addition to the energy transfer mechanism can hardly
be understood.

The situation described for the ozone.system is typical
and known for atom recombination reactions [17], The new
experiments indicate that small polyatomic systems show
similarly complicated mechanisms which also cannot be ide-
alized by Kramers’ model.

3. The Low-High Damping Transition Range

Investigations of the gas-liquid transition, from moder-
ately high carrier gas pressures to low viscosity liquid sol-
vents, provides an interesting access to the phenomena dis-
cussed in Kramers' model, At first, there is the typical falloff
behavior of the standard energy transfer mechanism of un-
imolecular reactions which, because of its multi-dimen-
sional-many coordinate.formalism, supersedes the one-di-
mensional Kramers model. Narrow Kramers turn-overs

.from the low- to the high-damping regime, except for dia-

tomic systems, are not expected within this theory [2,18].
The experimental results by Jonas and his coworkers (see.
e.g. [19]) of narrow rate coeflicient maxima on the pressure
scale, therefore, probably cannot be interpreted by a low-
high damping transition of a transport mechanism [20].
Besides the falloff pressure dependence of typical unimolec-
ular reactions, there is ample experimental evidence now for
a more complicated transition behavior, which can be at-
tributed to mechanisms involving clusters and electronically
nonadiabatic reactions. For instance, the recombination of
iodine atoms [21,22] and bromine atoms [23] at high inert
gas densities [M] show marked deviations from the recip-
rocal rate addition law

1/k = 1/ko + ko @

(ko denotes the pressure-proportional low pressure second
order rate coefficient and kyg indicates second order rate
coefficient of the diffusion controlled reaction). The transi-
tion between ko and kyq can be much broader [21 —23] than
given by Eq. (4); for iodine recombination in gaseous pro-
pane [21], the reaction order exceeds 3; S-shaped curves are
observed in the carrier gas He. More dramatic deviations
for the recombination of chlorine atoms [24] in N; and CO,
require further confirmation. Here one may think of the
formation of relatively stable CIN; or CICO; intermediates
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which trap the halogen atoms. Similar effects where ob-
served in the recombination of CHj; radicals in N, as op-
posed-to that in Ar [25] where N;CH; radicals may-play a
role. These effects, which all take place in the gas pressure
range 1—100 bar (at room temperature), suggest an impor-
tant-role of reactant-carrier gas clusters or even reactant-
carrier gas chemical intermediates. The presence of large
quantities of 1—C;H, clusters at C,H, pressures near 1 bar
has recently been confirmed by calculations [26].
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Dependence of second order rate coelficients & of the recombination
O + O, + Ar— O, + Ar on the bath gas concentration [Ar]
(from Ref. [15])
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Simplified model of the density dependence of rate coefficients of
unimolecular reactions according to Eq. (5) (see Refs. [2,18])

Mechanistic complications can lead to uneapected pres-
sure and temperature dependences i the low-high damping
transition range. As an example we again refer to the ozone

system where Fig. 3 illustrates the corresponding experi-
ments between 100 and 400 K at Ar pressures up to 1 kbar.
The various changes in reaction order appear surprising and
unexpected. The full analysis has to wait for better quantum-
chemical calculations of excited electronic states and for a
more elaborate theory of collision-induced nonadiabatic
transitions (see, e.g., the work for I, in Ref. [27]). Fig. 3 is
also in relation to the “feeling” of generations of kineticists
about electronic degeneracy factors in atom recombination:
at low pressures recombination was thought to proceed only
via the electronic ground state whereas in liquid phase a
contribution of all or at least a major part of the electronic
states correlating two radicals was suggested. This problem
is by no means solved. Fig: 3 shows how complicated the
transition between the gas phase low pressure and the con-
densed phase range can be.

4. Elementary Chemical Reactions in the Kramers-
Smoluchowski High Damping Range

In view of the many unsolved problems and the variety
of different phenomena contributing to the low and inter-
mediate density ranges such as discussed in scctions 2 and
3, which have all not been considered in Kramers’ treatment,
it appears reasonable to completely separate the treatments
in the low and high damping ranges of the Kramers model.
For the low damping range, Kramers’ approach has to be
replaced by conventional unimolecular rate theory including
adequate energy transfer models and accounting for the ad-
ditional mechanisms discussed in section 2. The combina-

. tion with the high damping Kramers-Smoluchowski treat-

ment then can logically be achieved by modifying the bound-
ary condition of the large-viscosity Kramers solution such
as claborated in Ref, [18]. In this way the low-viscosity limit
of the large-viscosity Kramers solution is replaced by the
general gas phase unimolecular rate expression. It is trivial
to show [2, 18] that, in first approximation this again leads
to a reciprocal rate addition law, see Fig. 4,

1k ~ 1fko + 1/ke + kaq (3

where ko, and kys describe the low pressure gas phase, the
high pressure gas phase and the diffusion control rate co-
efficients (being of first order for a unimolecular reaction, of
second order for a bimolecular association reaction). The
transition between the different ranges in the next approx-
imation is corrected by suitable broadening factors [28].
In the present section we inspect some experimental stud-
ies of elementary chemical processes in the Kramers-Smo-
luchowski high damping range, int particular with respect to
the viscosity dependence of the rate. We ask to what extent
the effects of frequency dependent friction in the “turnover
problem” (see e.g. Refs. [29,30]) have become visible and/
or which other phenomena may have manifested themselves.
We only consider studies in single solvents where viscosities
were varied by pressure (and temperature) changes. Halogen
atom recombinations in the gas-liquid transition range in
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all cases were found [21—23,31].to approach a k o« 1/

. relationship well.characterized by Smoluchowski’s equation

for diffusion control. This behavior was confirmed up-to
5—7 kbar in rare gases, small alkanes like ethane, but also
larger liquid alkanes like n-heptane, methylcyclohexane and
i-octane. Since no surprises were observed in these cases
characterized by Morse-type potentials, similar experiments
with energy barriers should be inspected,
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First order rate coefficients of the photoisomerization of trans-stil-
bene in ethane ( open circles: experiments from Ref. [32]; full line:
representation by Eq. (5) with fitted-threshold energy; dashed line:
Eq. (5) with threshold energy from isolated molecule experiments)
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First order rate coefficients of the photoisomerization of trans-stil-
bene in hexane ( full circles and full lines from Ref. [35]; dashed
line from Ref. [34], open circles: solvents = n-alkanes at 1 bar [33]

Association reactions of this type, for instance the addi-
tion of atoms to double bonds such as H + ethylene or
H + benzene having small barriers in the 4—12 kJ mol ™'
range, have not yet been studied in this way. However, uni-
molecular isomerization reactions with small barriers are
ideal model systems for the considered problem. In partic-

-

ular, the isomerization of electronically excited trans-stil-
bene and diphenylbutadiene have provided a large amount
of relevant data. Experiments in compressed ethane (See the
last results [32] shown in Fig. 5) follow precisely the Kra-
mers-Smoluchowski equation approaching k& oc 1/ in the
high damping limit (the logk — log1/D plot is chosen in
Fig. 5 in order to represent the gas-liquid transition in. the
most reasonable way), While no signs of a frequency de-
pendence of the friction are observed in this case, where
viscosities of the solvent up to about 0.6 cP were applied,
the situation changes with more complex solvent molecules.
For instance, experiments in compressed n-hexane in the 7
= 0.3—3 cP range showed k o¢ ™" dependences with a =
0.3-0.5 [33—35], see Fig. 6.

The comparison of Figs. 5 and 6 shows a striking differ-
ence. While the reaction in ethane at 4 & 0.5 cP accurately
follows the 1/4-dependence of the Smoluchowski limit of
Kramers' theory, at the same viscosity strong deviations
occur in n-hexane. First, this indicates that “isoviscosity
plots” of reaction rates are not meaningful in this case,
Doubts arise whether they are meaningful in other systems.
Second, the temperature and pressure dependences as well
as the dependences on the nature of the solvent [32,36,37]
show such a complicated behavior that frequency dependent
friction, if of importance at all, is only one of several factors
influencing the reaction dynamics in dense media. Third, the
comparison of isolated molecule isomerization data and the
construction of transition curves into dense environments
with the actual measurements (see Fig. 5) shows dramatic
differences in stilbene and smaller but still marked differ-
ences in diphenylbutadiene [32,37], What looks like the
transition state theory-low damping limit of Kramers theory
in Fig. 6, apparently is already highly “contaminated” by
reactant-solvent interactions compared to the isolated mole-
cule reaction. We have attributed this to a modification of
the potential energy surface in clusters which is typical for
the 0,1 —100 bar range, i.e. like for atom recombination we
have postulated a “cluster mechanism” operating in the in-
termediate damping range. If the Kramers equation applies
at higher densities, such as shown in Fig. 5, this apparently
means that further solvation of the cluster here does not
influence the potential. On the other hand, the y-dependence
observed in n-hexane may indicate stronger interactions and
modifications of the potential and/or microviscosity effects
such as frequency dependent friction. The effects cannot be
separated in a unique way such as emphasized before [28].
Apart from the difference between the “predicted” and meas-
ured curves in Fig, 5, shifts of the onset of a decay of k on
the D~ 'scale between different low viscosity solvents
{32,37] clearly demonstrate the presence of solvent-specific
reactant-solvent interactions in the cluster range. For this
reason, studies of isomerization rates of energy-specifically
excited isolated well-defined stilbene-solvent clusters are of
great importance and should be done urgently.

There arise further complications in the analysis when the
temperature dependences of the rates are investigated in
addition to the pressure dependences. Recent work in this
direction [32,37] has emphasized the different role which
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‘the-multidimensionality- of the potential plays in the Smo-
luchowski high dampmg and inthe unimolecular reaction
‘iow/damping regime. In the high damping range the shape
of the potential near to the saddlepoint, i.e. anharmonicity
in the reaction coordinate and nonlinear coupling with the
perpendicular coordinates, can have a marked effect on.the
temperature dependence of k in the Smoluchowski limit.
This-aspect merits further-attention.

5. On the Interpretation of Empirical “Activation
Volumes”

Experimentalists working on high pressure liquid phase

reaction kinetics traditionally represent their data in the
language of conventional transition state theory, i.e. by de-
riving “activation volumes”
AV* = —RT(@®Ink/op)r . (6)
According to the foregoing discussions, the interpretation of
AV* is a complicated task being much more invoived then
done in the usual “naive” picture, Solvent-reactant inter-
actions-in clusters, solvent-reactant “shifts” of the barriers
in solution, as well as pressure dependences of the transport
processes all are included in the formal AV* [18,28,38].
The picture of a “volume” obviously can be most misleading.
Separating off the transport contribution; and relating the
reactant-solvent modification of the potential with the “tran-
sition state activation volume” AVy%y, in the Smoluchowski
range of Fig, 5 one would have AV3%r = 0. A contribution
AV # 0 may be present in Fig, 6, however, being nonse-
parable from transport contributions. Complicated pressure
dependences of liquid phase reaction rates such as reported
in Rel, {19] may as well be interpreted by a superposition
of such static and dynamic reactant-solvent interactions. A
modelling on the molecular dynamics.level would require
not only treatment of the transport effécis [20] but also have
to include quantum-chemical calculations of the modifica-
tion of the potential by the solvent. More work in this di-
rection is required.

Many helpful discussions with J. Schroeder as well as financial
support by the Deutsche Forschungsgemeinschaft are gratefully ac-
knowledged.
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The pressure and temperature dependence of the-rate coefficient for the singlet state photoisomerization
of trans-stilbenc and all-trans-diphenylbutadiene in supercritical and liquid alkane solvents reveal the
importance of speclﬁc solvent cffects modifying the reaction path on the potential energy surface. In'the
gas-liquid transition range the barrier height for the reaction seems to be lowered due to increasing
solvation of the reactants in solute-solvent clusters, At higher pressures, the transition to the Smolu-
chowski-limit within each solvent is well described by Kramers' model. Differences between solvents can
be attributed to a solvent-dependent barrier shape. Deviations from this description only appear for
stilbene at higher viscositics. In part, they scem also be due to a specific influence of the compressed
solvent on the reaction path and to a frequency dependence of the friction, Solvent-size dcpcndent micro-
friction effects do not seem to be responsible for the observed solvent” dependence of the reaction rates,
Manifestations of multidimensional barrier crossing show up in the strong temperature dependence of the
rate coefficient at constant solvent self-diffusion coefficient, Apparently, the reaction path on the energy
surface changes with temperature leadmg to an eﬂ'ect:vely temperature dependcnt height and shape of the
barrier for the reaction with increasing excitation .of “perpendicular™ modes. Possible reasons for the
striking difference of the friction dependence of the rate coefficient between stilbené and diphenylbutadiene
at intermediate to high-friction are also discussed.

1. Introduction

The investigation of the influence of solvents on the ratés
of chemical reactions has been one of the main topics of
chemical kinetics for scveral decades. The problem can be
approached on different levels, Looking at the-role of the
solvent from the point of view of statistical mechanics in an
abstract, “non-chemical” way, hypothetical “non-interact-
ing” solvents simply act as a heat bath and may be consid-
ered as a continuous viscous medium at liquid phase den-
sities. From this point of view, statistical theories are suffi-
cient to describe solvent effects on reaction rates and enable
us to predict, e.g., the entire pressure dependence of a uni-
molecular reaction from gas to liquid just from the micro-
canonical rate coefficients measured under isolated molecule
conditions [1—3]. Such a prediction then has to be com-
pared with experiments covering a pressure range as wide
as possible in a single inert solvent. This approach opens
the possibility to test the range of applicability of different
theoretical models as well as — by comparing the pressure
dependence in different solvents — to detect specific solvent-
solute interactions that may obscure purely collisional or
frictional effects in real solvents.

In this spirit [1,2], we have recently extended our earlier
measurements [4] of the pressure and temperature depend-
ence of two particularly well-studied reactions [5, 6], the S;-
photoisomerization of trans-stilbene and E,E-1,3-diphenyl-
butadiene (1.3} (in the-following referred to as stilbene and
DPB, respectively) {7,9]. The dynamics of thes. two reac-
tions has been investigated under isolated molecule condi-
tions [10—-16] as well as in numerous, mostly — with few
exceptions [17—19] — liquid solvents with picosecond time
resolution. Detailed systematic studies of the viscosity and
polarity dependence of the rate coefficient in homologous
series of nonpolar [20—23] and polar [19,24 —29] solvents
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have been carried out, the temperature dependence in the
low viscosity regime close to the so-called “Kramers-turn-
over” region [18,30—31] and the deuterium isotope effect
have been investigated [12,19]. There have been aiso two
studies of the pressure dependence in liquid solvents
[23,32]. As a result of these experimental efforts, three phe-
nomena have emerged that appear to be crucial to the un-
derstanding of the solvent influence on the photoisomeri-
zation dynamics-in these systems:

(i) The turnover of the rate coeflicient from the collisional
activation into the diffusive regime is not observed in low
viscosity liquids [30,31], as one would have expected on
predictions based on Kramers’ theory [33], but at even
lower friction in supercritical solvents [4, 17].

(ii) Assuming that statistical reaction rate theories are ap-
plicable, thermal averaging of the microcanonical rate co-
efficients obtained for isolated stilbene leads to a value of
the high pressure, iimiting rate coefficient k., which is an
order of magnitude below the measured value in liquid so-
lution [11,34]. For DPB, £, is only about a factor of two
below the measurement in liquid solvents [35,36].

(iii) In a series of n-alkane solvents, the observed nonra-
diative decay rate of the S;-state, k,, does not show the
expected inverse dependence on solvent viscosity # for nei-
ther stilbene [20] nor DPB [23].

No doubt remains that the first observation can be un-
derstood, if one includes multidimensionality in the theo-
retical description of the low-damping region, which is not
taken into account by Kramers' original treatment {1, 2,
37-40]. The physical explanations offered for the other two
phenomena, however, are still controversial and will be dis-
cussed here in the light of our recent results on the pressure
and temperature dependence of &, for stilbene [7,41] and
DPB {8,9] in nonpolar solvents.

VU3-90.21,91,0303-0233 § 350 +.25,0
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2. Experiméntai Technique

Decay rate coefficients of the S;-state of stilbene in all solvents
and of DPB in-supercritical solvents, liquid ethane and propane
were measured by picosecond pump-probe absorption spectros-
copy as described in detail earlier [4, 8]. The were determined from
the transient absorption decay at 616 nm after excitation at 308 nm.
The FWHM of the UV-excitation pulse was approximately 5 ps,
its value for the red probe pulse was 2.5 ps. the pump pulse energy
hitting the sample was about 0.3 mJ at 308 nm, and the energy of
the 616 nm probe pulse was about 0.05 mJ. The plane of polari-
zation of the probe beam could be varied by means of a zero order
halt-wave plate to climinate the effects of overall rotational relax-
ation on the transient absorption signals. Samples of 200 mm thick-
ness-were used in high pressure gas phase experiments, and of 20
mm or 1.8 mm in liquid phase measurements,

The §;-decay rates of DPB in liquid n-alkane solvents (pentane
to dodecane) at room temperature were obtained from the fluores-
cence lifetimes measured by time-correlated single photon counting
[9,42]. Excitation light pulses at 308 nm from a frequency-doubled,
synchronously-pumped dye laser (pulse autocorrelation FWHM
1.4 ps) were used at the full repetition rate of 76 MHz. Fluorescence
from the 7 kbar high pressurc cell was detected perpendicularly to
the excitation beam in a “magic angle” arrangement. The FWHM
of the instrument response function was 520 ps, its time resolution
in conjunction with the high pressure fluorescence cell about 100 ps.
For the analysis of the fluorescence decay histograms we used a
convolution and fitting procedure in conjunction with a Fourier-
transform method to take full advantage of the high repetition rate
of the instrument. Fluorescence lifetimes measured at ambient pres-
sure in a-standard quartz fluorescence cell agreed to within 2%
with literature data for the lifetime range from 150 ps to 2 ns,
confirming the infernal consistency of the fitting procedure. The
data scatter obtained with the high pressure cell was slightly worse,
amounting to at most 5%,

3. Results and Discussion
3.1. Solvation Effects at Low Friction

The comparison of the non-radiative rate coefficients k,,
of stilbene and DPB measured at low friction in different
supercritical solvents with the corresponding calculated high
pressure gas phase limiting rate coefficienis ko, [7,8] in
Table 1 shows an order of magnitude discrepancy for stil-
bene¢ and a systematic deviation for DPB of the order of

Table 1

two. The calculations are based on an optimized RRKM-

fit [34,35] to experimental specific rate constants k(E)

[10—16] which gives the reaction threshold E,([M] = 0) for
the isolated molecule and an activated complex frequency
scaling factor. Thermal averaging of k(E) over a Boltzmann
distribution then leads to k. In this analysis, one makes
— in addition to some minor approximations [7,8] —~ the
assumptions that

(i) Ky is the rate coefficient for the twisting motion about
the double bond, which is followed by rapid internal con-

‘version to the ground state in a twisted geometry [5,6], and

that

(ii) This motion proceeds as a thermal adiabatic reaction
on a singlet excited state potential energy surface,

Following this approach, we have proposed [4] that k,,
exceeds k, for both molecules, because the effective barrier
height for the reaction changes as a “sclvation shell” grad-
vally builds up around the reactants already at densities
that are an order of magnitude below that of, e.g, liquid
alkanes at ambient temperature. We model this increasing
solvation in solvent clusters [8] simply by the equilibrium
coverage © of the reactant “surface” due to “adsorption” of
solvent.molecules, which increases with solvent concentra-
tion {fM]:

(M) = K/(1 + K.[M]) )

where K, is the adsorption equilibrium constant, We then
propose a lincar dependence of the barrier height on 6,
which allows us to calculate k. ([M]):

Eo([M]) = Eo([M]=0)- 6({M))

@
*{Eo{[M] = 0) - Eo(solv)}
ko (IMD) = ET k(E) /(E)E. ®

o(fM})

Here E,(solv) denotes the reaction threshold energy for the
reactant that is sufficiently solvated in solvent clusters. In

Companson of non-radsative rate coefficients Ay, of stilbene and DPB at low friction with the calculated high pressure limit A,. Estimates of degree of

solvation @ and barrier height Eg(solv) for solvated reactants

- - Ey(sol
Solvent K kyf10° 51 K /10° 5™ o (M) L (k3fmol)
stilbene  Eo([M]=0) = 1300 cm~" (15.5 k¥/mol)
methane (see text and Fig. 2) 725 8.7
ethane (see text and Fig. 1) 675 8.1
propane 468 50 16 0.86 675 8.1)
DPB Ey([M]1=0) = 1100 cm™=! (13.2 kJ/mo})

ethane 388 50 17.9 096 850 (10.2)
SF, 388 32 17.5 0.96 930 (11.1)

364 21 14.8 0.96 930 (1L1)
CO, 334 50 17.5 097 810 ©.7)
Helium 429 40 259 092 955 (11.4)

9 Taking K, = 10* cm’/mol (see text) for all solvents except Helum (K, = 2 10’ em’ mol) and methane (X, = 4 10* em’ mol).
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the following, we will continue to use the-term “solvated”
in this sense. ,

The gradually increasing solvation of stilbene and DPB
in supercritical ethane is also visibleiin the spectral shift of
the electronic ground state absorption spectra [7,8). Plots
of the redshift of the absorption maxiima versus solvent po-
larizability show a steeper slope in low density supercritical
solvents, where partial solvation in solvent clusters takes
‘place, than at higher liquid phase densities. From the solvent
density-at which the fairly abrupt change in slope occurs,
we can estimate the order of magnitude of K; for ethane,
K, ~ 10* cm*/mol. This value is in the same range as those
estimated from the gas phase cage effect in iodine photolysis
[43].

With this estimate of K, we obtain from Eq, (1) the values
for @ listed in Table 1. Using Eqgs. (2) and (3), we can then
fit ko ([M]) to the measured k&, by choosing the appropriate
value of Ey(solv), The results of this fitting procedure are
listed in the last column of Table 1, Such an analysis of the
rate coefficients of DPB shows that Eq(solv) definitely varies
with the nature of the solvent. This indicates the presence
of solvent-specific interactions that cause a decrease of the
barrier height for the reaction in the solvated with respect
to its magnitude in the isolated molecule. We would like to
emphasize that in this low density range the friction is not
sulficiently high to cause any barrier recrossing, It is, there-
fore, permitted to compare the measured k,, directly with
koo

25.5 1
o
1
0
s
a6 25.0 1
SN’
5
24,5 +——r——T 17
2.0 2.5 3.0 3.5
1000K/T
Fig. 1

Temperature dependence of the nonradiative rate coefficient &, of
stilbene in ethane at low friction. The solid line represents the tem-
perature dependence of the high pressure limit of the thermal rate
coefficient, k.., calculated for an cnergy barrier Ey(solv) = 675cm™!
(8.1 kj/mol)

Fig. 1 shows an Arrhenius representation of the tempera-
ture dependence of &, for stilbene at such low densities in
ethane. The dashed line represents the calculated tempera-
ture dependence of k., for a barrier height E,(solv) = 675
cm ' (8.1 kJ, mol), corresponding to an activation energy
E. ~ 530 cit ~'(6.3kJ, mol). The energy barrier is cffectively
lowered by a factor of about two in solvated stilbene. In

DPB this effect is much less pronounced, amounting to ap-
proximately 25 percent in ethane.

Further support for a solvation-induced barrier shift
comes from a corresponding analysis [8] of k,-values of
stilbene measured in methane at room temperature [18] as
shown-in.Fig. 2. The dashed curves represent the density
dependence of the rate cocficient calculated according to
the Lindemann-Hinshelwood expression

k = ko[M] keo/(ko[M] + Keo) “

with the low-pressure limiting rate coefficient k,[M] as
given in Ref. [8] and k&, from Eq. (3) for E,[M]=0) =
1300 cm™* (15.5 kJ/mol; lower curve) and Ey(solv) = 725
cm™!(8.7 kJ/mol; upper curve). The experimental data dem-
onstrate the transition between these two limits due to in-
creasing solvation of stilbene in solvent clusters, which can
be modelled (solid curve by Egs. (1) to (3) with an equilib-
rium constant Kg = 4:10° cm*/mol.
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Fig. 2

Density dependence of the nonradiative rate coefficient &, of stil-
bene in methane (data from Ref. [18]). The upper and lower dashed
curves represent calculations of the thermal rate coefficient for en-
ergy barricrs Eo([M] = 0) = 1300 em™* (15.5 kJ/mol) and E,(solv)
= 725 cm™" (8.7 kJ/mol), respectively. The solid curve is calculated
from the solvation model (sce section 3.1) using an equilibrium
constant of K, = 2- 10* cm¥%mol

The solvent dependence of K and E,(solv) found for DPB
is as one would intuitively expect: “less interacting” solvents
give rise to smaller barrier shifts and also seem to have
smaller values of Ks, though the latter are only rough esti-
mates for all solvents but methane. As we do not know
which of the electronic configurations contribute signifi-
cantly to the excited state potential energy surface for the
reaction and how solvent-solute interactions might affect the
mixing of them, we can only speculate, why the solvation
effects is much more pronounced for stilbene than for DPB
photoisumerization. Evidently, the energy gap between the
two lowest excited singlet state 'A, and 'B, is much smaller
in DPB than in stilbene, and their order in the gas phase is
reversed [14, 15,44]. It seems, however, that the 'By-state is
the lower state for both molecules in solution [23,45]. How
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this might affect the energy barrier for the-twist around the
double bond or-its susceptibility to solvant interactions we
do not-know at present.

The solvation model should be tested experimentally by
preparing stilbene-solvent clusters in a supersonic jet ex-
pansion and-measuring k;, at different excitation energies.
If the cluster binding energy exceeds the height of the energy
barrier, one can study the dependence of k,, on cluster size,
internal energy, and solvent. In this way solvent induced
changes in the effective barrier height should become ap-
parent that confirm the parameter values derived here.

The interpretation given here rests on the assumption that
the photoisomerization can be treated as a thermal reaction
on an adiabatic potential energy surface. In view of the deu-
teration effects on k,, [12,19], which seem to be in conflict
with RRKM-calculations, it has been argued that these con-
ditions might not be met, because of

(i) incomplete internal vibrational energy randomization
(IVR) in the isolated molecule [18,19,36,46], or

(ii) the non-adiabaticity of the reaction surface [11,47],
which concerns the question of the origin of the energy bar-
rier in the lowest S;-state of stilbene and DPB [5,48—50].

In these alternative models, the apparent discrepancy be-
tween the nonradiative decay rates for isolated and solvated
stilbene is then attributed to

(i) the reaction rate being controlled by slow IVR-proc-
esses in the isolated molecule [19,51], or to

(ii) a transition from a diabatic to a adiabatic process with
increasing friction due to a slowdown of the passage through
the avoided curve crossing [12].

We have discussed these points in detail previously [7, 8,
38], and concluded that, as long as we do not have sufficient
information on the potential energy surface for the reaction,
we have no means to entirely reject any of the proposed
explanations. The observation of solvent-specific effects,
however, seems to support the view that the effective reac-
tion barrier decreases due to solvent induced changes of the
adiabatic potential energy surface.

If limited IVR alone would be responsible for the obser-
vation of an apparently higher barrier in the isolated mole-
cule, then collisionally assisted IVR should eventually bring
down the barrier height to its “real” intrinsic value, irre-
spective of the nature solvent. Also, one would not expect
limited IVR to be of significance in a molecule of the size
of DPB. i

Specific solvent effects could be accounted for in the
framework of the diabatic model, because differential solvent
shifts-of the two states involved could have an effect on the
crossing point dynamics. But one would not expect an in-
crease in the adiabaticity of the reaction already at methane
densities where the transition of &, from isolated to solvated
stilbene takes place (Fig. 2), because collision rates there
would be far too low compared with the dwell time of the
reactant in the crossing point region, as pointed out by
Fleming et al. [18,19].

An effect analogous to the shift of the reaction barrier
induced by intermolecular interactions proposed here was
observed as a consequence of intramolecular interactions in

J. Schroeder: Photoisomerization in Dense Gases and Liquids

4-alkyl-substituted stilbene, which shows a significantly
lower reaction barrier under isolated molecule. conditions
upon substitution with ethyl and propyl [52].

3.2. Transition from Low to Intermediate Friction

We can now combine unimolecular rate theory — rep-
resenting the pressure dependence of k,, in the falloff regime,
including the lowering of the reaction threshold with density
as described above — with Kramers’ expression [33] to
describe-the influence of increasing friction on the reaction
[1,373:

_ kM,

knr e ko [M] +k°° FKr (5)
with

Fye = [FlAof + 11" = B2, . (6)

The mass weighted friction coefficient f can be estimated
from the molecular parameters of stilbene and DPB and the
Stokes-Einstein relation [7,8,53] assuming that a hydro-
dynamic description is applicable. We use [4] the solvent
self-diffusion coefficient D instead of solvent viscosity as the
relevant parameter to describe solvent {riction throughout
the entire pressure range, The “imaginary barrier frequency”
wy in Kramers' model describes the shape or curvature of
the reaction path across the energy barrier. Without know-
ing the potential surface for the reaction, however, one
should be careful uot to a priori identify it with a unique
physical quantity. Instead, it has to be considered as a fit
parameter which essentially contains all pressure or friction
induced varjations of the prefactor that are not already
taken care of by f and k.
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Fig. 3

Nonradiative rate cocflicients &, of stilbene at 7= 298 K in cthane
(O), propane (A), and n-butane ({J) versus D% The solid lines
represent model fits (see section 3.2) with Ey(solv) = 675 cm !
(8.1 kJ;mol) and w, = 2.6 10"®s ' for cthane, w, = 4.4 1075 '
for propane, and wy, = 6.5 10"s ' for n-butane
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Table 2

‘So]vent. dependefice of barrier heights Eq(solv) and.imaginary. barrier fréquencies wj, for stilbene and DPB

Eo(solv)/ 12 =1 25 =3 3)
S,ol'vent T/K: om= (k3/mol) wp/10% s o/10™% cm
Stilbene i
cthane 298 675 1) 26 4.6
propane 298 675 @81 44 62.9
n-butaae 298 675 8.1) 6.5 81.2
CO,. 298 580 69) 28 26,5
SF; 298 590 (7.1) 6.0
Xenon 298 600 (7.2 10 41
DPB
ethare 295 850 (10.2) 045 42,6
propanc 295 850 10.2) 0.65 62.9
n-butane 295 850

(10.2) 1.0 81.2

a) Molecular polarizability o, Ref. [$5].

The result of modelling the isothermal pressure depend-
ence of k, for stilbene at =° = 298 K in ethane, propane
andn-butane, using Eqs. (1) —(6) with Ey (solv) as determined
independently at low pressures (Table 1) and fitting w, is
shown by the solid curves in Fig. 3, a double logarithimic
plot of k,, versus 1/D, There are two things to note:

(i) Kramers® expression, Eq. {6), perfectly describes the
variation of k, with friction in each of the solvents (the
maximum solvent viscosity in n-butane is 1.5 mPa-s).

(ii) There is a significant solvent dependence of k,,, in
addition to the purely frictional effect. (This appears as the
successive shift of the curves in the region of higher friction,
The shift in the falloff regime results from the proportion-
ality between collision frequency and 1/D which contains
the solvent-solute reduced mass as a constant). According
to our model, this is a consequence of the solvent depend-
ence of W,

The variation of w, with solvent, which is found for both
stilbene and DPB, is shown in Table 2. It appears that, to
a first approximation, within the small alkane series at least,
w, increases with the molecular polarizability « of the sol-
vent. For the other solvents, w, is higher than expected by
this correlation. Apparently specific solvent-solute interac-
tions modify not only the barrier height, as in the low-den-
sity region, but also its shape.

An alternative explanation could be a variation of the
proportionality constant linking f and the self-diffusion co-
efficient, i.e. a solvent dependent microfriction factor [22].
According to existing microviscosity models [54,55] this
factor becomes increasingly important with decreasing sol-
ute to solvent size ratio. For a larger ratio, one would expext
hydrodynamic models to give a better description than for
a smaller ratio approaching unity. For the small sizc solvents
listed in Table 2, therefore, w, should show a more pro-
nounced variation for the smaller stilbene than for DPB. As
w, increases by about a factor of three from ethane to
n-butane for both stilbene and DPB, this expectation is not
met. So either microfriction effects are not important or the
hydrodynamic volume of the moving molecular group is

about the same in both cases. In the latter case, this would
throw doubts on the approach to use friction coefficients
determined from the overall rotational relaxation of the
molecule to describe the [riction dependence of &, [22, 58,
59].

3.3 Beyond Intermediate Friction

Deviations from the inverse viscosity dependence of ky,
predicted by the Smoluchowski-limit of Kramers’ expres-
sion,

ksm ~ kno wb/ﬁ (7)

in nonpolar solvents for stilbene and DPB have been ob-
served for viscosities 1 > 2 mPa-s in n-alkane solvents bu-
tane to hexadecane at atmospheric pressure [20—23]. In
the past, the weak decrease of k,, with 1/n — corresponding
to a power law of about ~%* — mostly has been associated
with a breakdown of the standard hydrodynamic descrip-
tion of the frictional solvent forces contained in the param-
eter f in Eq. (7). It has been attributed to the frequency
dependence of the friction [20-23,57], i.e. to non-Mar-
kovian behaviour of the solvent, or, alternatively, to a break-
down of the Stokes-Einstein relation connecting friction and
viscosity [22,58—61], i.e. to microfriction effects. We have
proposed that a variation of the barrier height with alkane
could be responsible for the observed effect [4] — similar
to those occurring in polar systems [26], — although it has
been claimed [62] that available activation parameter data
in liquid alkane solvents at atmospheric pressure preclude
such an assumption.

Our recent study of the pressure dependence of k,, for
DPB in n-alkane solvents ranging from pentane to dodecane
[9] demonstrates that restricting the experiments to just a
variation of solvent may lead to a qualitatively different
picture of the physical phenomena underlying the photoiso-
merization dynamics. Fig. 4 shows as one example a tinear
plot of &, for DPB versus 1/y in compressed pentane and
dodecane at T = 298 K. The points to note are
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(i) the linear correlation between k, and 1/n,

(ii) the markedly différent slope for the two solvents, and

(iii) the nonzero intercept for infinite viscosity.

The intercept was.assigned to a second, viscosity inde-
pendent nonradiative channel from the S,-state of DPB,
probably internal conversion to the EE-ground state
[9,23]. Its rate coefficient k;, varies slightly with solvent [9].
The slopes -B; increase with alkane chain length. (The vari-
ation in slope B, with solvent is equivalent to the shift seen
for the three solvents ethane to butane in Fig. 3 as expressed
in a-variable w; in Table 2). Fig. 5 shows a double logarith-
mic plot of kio/Bs = (kn — kil)/B; versus demonstrating the
perfect 1/n-dependence.
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Fig. 4

Nonradiative rate coefficient k,, of DPB-in péntane (Q) and do-
decane () at T = 298 K versus 1/n. Solid lines represent linear
least squares fits to the experimental data

100

T 10
‘_‘UJ
1

©
&

o

i
P
m 0.1
~N

2
&
~ 0.01

0.01 0.1 1 10 100
n/10"°Pas

Fig. 5

Viscosity dependence of solvent scaled 1somerization rate coefficient
kio/B; for DPB in n-alkane solvents from ethane to dodecane in
the pressure range from 0.1 — 650 MPa. (B, is the slope of the linear
plot of k. versus 1/i; see section 3.3)

A conclusion that can be drawn immediately from the
observed linearity is that the reaction rates k,, are not in-
fluenced by frequency dependent friction. Microfriction

models that include available volume effects [55] and would
predict a pressure dependence of microviscosity factors also
do not apply.

There-remain three possible explanations for the solvent
dependence of B (i) a solvent dependent microfriction fac-
tor, (i) a variation of k., with solvent, i.e. a solvent induced
barrier shift of Eq(solv), and (iii) a change of the barrier shape
w, with solvent,
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Fig. 6

Comparison of experimental slopes B, (O) and slopes calculated
from the Gierer-Wirtz microviscosity model (solid line) and from
rotational relaxation via the Hubbard relation (dashed curve)
(Ref. [9], sce section 3.3)

In Fig. 6 we compare experimental Bg-values with esti-
mates of microfriction factors calculated from the modified
Gierer-Wirtz model [54,55], which predicts a linear de-
pendence of B, on solvent size [9], and with friction coef-
ficients flix determined via the Hubbard relation [63,64]
from experimental molecular rotational relaxation times in
the S;-state [59,65]. In both cases the calculated values in-
crease with solvent size, but the observed dependece of B,
is qualitatively different, showing first an exponential rise
followed by a turnover probably into saturation for the two
largest solvents studied. From this apparent discrepancy we
conclude that microfriction effects may contribute to some
extent, but that existing models would predict a qualitatively
different solvent dependence than observed [9]. This is in
agreement with similar findings by Kim and Fleming for
stilbene [22] and supports our interpretation that the dif-
ferent wy-values for ethane to butane in the intermediate
friction regime indicate solvent-induced barrier shape
changes and are not caused by changing microfriction fac-
tors.

As the hydrodynamic Kramers-Smoluchowski expression
represents the variation of the rate coefficient of DPB with
friction 1n longer chain alkane solvents, solvent-induced bar-
rier height and shape variations remain as a possible cause
for the strong solvent dependence of the slopes. As we find
no variation of E,(solv) for DPB from ethane to propane
to butane, one can assume as a first approximation that
there will probably be also little variation with further in-
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creasing alkane ch;tin length, and. that changes.of w, may
be.of greater importance.
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Fig. 7
Nonradiative rate coefficients k. (p)ka:(p = 0.1 MPa) of stilbene
and DPB at T =298 K.in compressed n-hexane. (O) stilbene,
Ref. [41]; (@) stilbene, Ref. [32] (calculated from ﬂuoresccncc

quantum yields); (CJ) DPB, Ref. [9]. The dashed line corresponds
to a linear least squares fit, the dashed curve to-a power law %%

Does -the Kramers-Smoluchowski description also hold
for stilbene photoisomerization in single solvents in the same
friction regime? In Fig. 7 we compare the viscosity depend-
ence of the rate coefficients for stilbene and DPB in com-
pressed hexane relative to their respective values at atmos-
pheric pressure, The strongly nonlinear behaviour of the
stilbene rate coefficient corresponds to a fractional power of
0.29 [41] (indicated by the dashed curve), which is fairly
close to -the exponent 0.32 found for the alkane series
[20,21,30,66]. This result agrees with a recent detailed
study of Kim and Fleming [22], who conclude- that the
frequency dependence of the friction contributes signifi-
cantly to the observed viscosity dependence rather than mi-
croviscosity effects. Since probably mainly the size ratio of
twisting moiety to solvent molecule, which must be very
similar for stilbene and DPB, determines to what extent the
actual friction deviates from that measured by solvent vis-
cosity, our results for DPB also rule out microfriction as a
major contributor to the observed deviations.

Whether frequency dependent friction, pressure induced
changes of the potential surface parameters or the multidi-
mensionality of the barrier crossing process [68,74,78,79]
are responsible for the observed phenomena, is still an open
question. Further experiments on the pressure and tempera-
ture dependence of the rate coefficient at high friction are
needed to answer it. It would be surprising, however, if the
striking difference between stilbene and DPB would be
caused by effects due to multidimensional barrier crossing
in stilbene that would not appear in DPB. This would also
contradict the experimental manifestations of multidimen-
sionality we find in the temperature dependence of &, for
stilbene and DPB (see section 3.4 below).

It might be that it is frequency dependent friction which
is more important in stilbene than in DPB, because the time

scale of the reaction in-hexane at the same viscosity is more
than one order of magnitude shorter for stilbene. An analysis
of the pressure.dependence of &, in hexane along different
isotherms indicates, however, that possibly more than one
effect is.involved [41]. A comparison with corresponding
measurements in-methylcyclohexane again reveals-the im-
portance of specific solvent effects [41], although it remains
difficult to decide whether the different viscoelastic response
of the solvents or a potential energy surface-effect is re-
sponsible. A comparative high pressure study of stilbene and
DPB in alcohol solvents [67], where the reaction for both
molecules is much faster due to & much lower barrier, how-
ever, reveals the same difference in viscosity dependence as
in hexane: rate coeflicients for DPB are linear in 1/5 in each
solvent, while for stilbene they show the power dependence
found in solvent series experiments [24—27,66]. In the in-
termediate to high friction regime, independent of the nature
of the solvent, there seems to be a basic difference between
stilbene and DPB photoisomerization dynamics, the origin
of which still has to be clarified in further experiments.

3.4, Multidimensional Barrier Crossing

The original Kramers model treats the diffusive barrier
crossing as a one-dimensional process in which a single
mode becomes the reaction coordinate, A multidimensional
theory has only been fully developed fairly recently
[68 73], and the importance of friction anisotropy {74, 75]
and.the topology in the barrier region has been recognized
[76,77). Experimentally, the multidimensional barrier to-
pology can manifest itself in the form of the temperature
dependence of the rate coeflicient [8,80], which — by high
pressure techniques — cas be measured in a single solvent
at approximately constant self-diffusion coefficient or vis-
cosity in the intermediate and high friction regimes [7,8].
Figs. 8 and 9 show Arrhenius plots of k,, for stilbene and
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Fig. 8

Temperature dependence of the nonradiative rate coefficient k,, of
stilbene in ethane at constant friction (D &~ 5:10~! cm¥s): (O) ex-
periment; dashed line: calculated from Eq. (5) with temperature-
independent parameters w, and E(solv), sold line. calculated with
temperature-dependent parameters (sce section 3.4)
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Temperature dependence of the nonradiative rate coefficient &, of
DPB in ethane at constant friction (D ~ 4:10~* cm¥/s): (O) exper-
iment; dashed line: calculated from Eq. (5).with temperature-inde-
pendent parameters wy and E (solv); solid line: calculated with tem-
perature-dependent parameters (see section 3.4)
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Nonradiative rate coefficients k,, of stilbene in ethane versus D!
at different temperatures. The solid lines represent model calcula-
tions (see section 3.4).

(O) T = 298 K, Ey(solv) = 675 cm~! (8.1 kJ/mol), w, = 2.6/ps;
() T = 330K, Ey(solv) = 675 cm™! (8.1 kJ/mol), wy, = 2.6/ps;
(&) T = 356 K, Ey(solv) = 625 cm™' (1.5 kJ/mol), w, = 3.0/ps;
(¢) T = 375K, Ey(solv) = 590 cm™! (7.1 kJ/mol), w, = 4.0/ps

DPB .at intermediate friction in ethane for approximately
constant D together with the temperature dependence pre-
dicted by Eqs. (5) and (6) {dashed curves) with input para-
meters from Table 2. The discrepancy between experiment
and model is quite pronounced. Additional information
comes from the pressure dependence of &, in ethane along
different isotherms, Figs. 10 and 11. The solid curves in these
plots correspond to fits obtained by allowing parameters
Ey(solv) and o, to vary with temperature — the only way
our model can account for the shift and increasing broad-
ening of the isotherms with temperature. If we use the tem-
perature variation of E,(solv} and w, found from fitting the

isotherms and recalculate the Arrhenius-plot correspond-
ingly, we obtain :the solid .curves in Figs. 8 and 9, which
agree-much-better with the measured temperature depend-
ence.
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Nonradiative rate coefficients k,, of DPB in ethane versus D™ at
different temperatures. The solid lines represent model calculations
(see section 3.4).

(O) T = 295K, Ey(solv) = 850 cm~" (10.2 kJ/mol), w, = 0.38/ps
(O) T = 340 K, E,(solv) = 850 cm™! (10.2 kJ/mol), », = 0.80/ps
(A) T = 370 K, Ey(solv) = 850 cm™! (10.2 kJ/mol), w, = 1.1/ps

Modelling k(7' in this way [7, 8] demonstrates that the
higher activation energies in the intermediate friction re-
gimes as compared to the values we find in the low friction
region are caused predominantly by a significant increase of
wy, with temperature — in the case of stilbene the effective
barrier height Ey(solv) actually seems to derease slightly as
the temperature increases. The temperature dependence of
oy, for DPB and stilbene in ethane and propane can be
represented by the expression

op(T) & 0o S1) + ar(T=1; T; = TTy ®)

where the first term is the wg-value from Table 2, T =
300 K, and ay takes the values 13.6/ps K? for stilbene and
9.7/ps K? for DPB.

We have discussed this temperature effect in detail [7,8]
and inspected one-dimensional barrier anharmonicity (i.e.
barrier shape effects) and multidimensional barrier crossing
as possible explanations for this behavior. Anharmonicity
effects are by far too small to account for the observed large
temperature coefficients [7]. We concluded that these de-
viations from the one-dimensional Kramers-model are
manifestations of multidimensional barrier crossing proc-
esses. We propose that with increasing thermal excitation
of “perpendicular” low frequency modes the reaction path
on the potential energy surface may change because the
motion along the perpendicular coordinates has a much
weaker friction dependence than the “main” reaction coor-
dinate. (This is equivalent to the model propused by Agmon
and Kosloff [68] to explain the observed viscosity depend-
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enice -of stilbene at high friction). If the curvature of the
barrier region increases with increasing pérpendicular mode
amplitude — as shown schematically in Fig. 12 — the sys-
tem may cross the barrier at some distance from the saddle
point, because the traversal time will be shorter and the
-probability of recrossing consequently lower. Because dif-
fusion along the perpendicular coordinates is much faster,
a ‘Boltzmann distribution can be maintained in this mode
whose high energy tail feeds the fast crossing channel.:In a
different terminology this means that the separatrix of the
system due to anisotropic friction shifts away from the sad-
dle point (73,74, 80].

Fig. 12

Schematic representation of a potential encrgy surface V(gi, q2)
which shows a “sharpening” of the imaginary barrier frequency w,
of 'the reaction coordinate ¢;, when a perpendicular coordinate ¢;
is excited (see section 3.4)

We have described a simple model [7], showing that the
change of the effective curvature along the reaction path
with the energy E, in the perpendicular mode, e.g. w, =
const. *E,", can lead to a corresponding temperature de-
pendece w, =~ const. - T". According to our model we find
for both stilbene and DPB n &~ 2. This would imply that
the degree of multidimensionality is similar for barrier cross-
ing in stilbene and DPB.

. In this picture, the activation energies observed in liquid
solution [5,62] at intermediate or high friction do not cor-
respond to the sum of an intrinsic and “viscous” barrier, but
— in a formal sense — in addition reflect the temperature
dependence of the prefactor due to the multidimensional
dynamics at intermediate friction. Only in the low friction
regime is the “intrinsic” barrier of the solvated molecule
directly related to the activation energy. In this sense, it does
not seem to be significant whether or not barrier heights
determined under isolated molecule conditions agree with
isoviscous activation energies measured in liquid solution.

Recently, Park and Waldeck [78] have inferred the mul-
tidimensional nature of the barrier crossing from a slight
increase of isoviscous activation energies of -, 4’-dimethyl-
stilbene with viscosity in a series of n-alkanes. The evidence
is not very conclusive, however, as solvent size effects could
also be involved and the general caveat concerning isovis-
cosity plots remains, as the authors note. They put forward

further evidence for multidimensionality following their

.analysis of multiexponential fluorescence decays for 3,3-di-

methylstilbene [79], which they intefpret as -being caused
by phenyl ring motion on the same timescale as isomeri-
zation. Photoisomerization of cis-stilbene also seems to ex-
hibit multidimensional character [81].

Neglecting differences in emphasis and argument , it seems
clear that experiments under a variety of conditions probe
different details of the potential energy surface and begin to
reveal its multidimensional character. Whether the excited
electronic reaction surface is modified by solute-solvent in-
teractions or whether one is probing different reactions
paths on a solvent independent surface remains to be clar-
ified. In view of the experimental information available, a
simple one-dimensional picture is certainly no longer suffi-
cient, Though we did not find pressure dependent intrinsic
barriers for the smaller alkanes, which represent one of the
effects behind formal “activation volumes”, this does not
necessarily mean that such eflfects may not be present in
higher alkane solvents, A complete separation of the ob-
served effects in terms of frequency dependent friction, pres-
sure and solvent dependent barrier shifts, and multidimen-
sional barrier crossing is a difficult task. It cannot be ac-
complished by the analysis of measurements at ambient
pressure alone. Additional studies of the temperature and
pressure dependence appear obligatory,

4. Conclusion

In the present article we have presented evidence for sol-
vent-cluster induced modifications of the potential energy
surface for photoisomerization of stitbene and DPB. Our
anlysis allowed us to deduce the threshold energy for iso-
merization of solvated stilbene and DPB in a variety of
solvents at low friction,

At intermediate friction, our analysis of the pressure de-
pendence showed that the hydrodynamic form of Kramers
equation is fully adequate to represent the observed de-
pendence of the rate coefficient on friction for DPB in sol-
vents up to dodecane. The observed solvent dependence can
be reproduced neither by existing microfriction models nor
by introducing rotational friction coefficients. By analogy
we suggest that microfriction effects are also not important
in stilbene photoisomerization. The hydrodynamic Kramers
model also holds for stilbene in small solvents. In hexane,
deviations occur which possibly can be attributed to fre-
quency dependent friction effects.

The solvent dependence of the rate coefficient turns out
to be a consequence of a variation of potential surface par-
ameters. Their apparent variation with temperature is a
manifestation of the multidimensional character of the bar-
rier crossing process in both stilbene and DPB. Most prob-
ably, however, the multidimensionality is not responsible for
deviations from an inverse viscosity dependence in higher
alkane solvents, because DPB and stilbene behave differ-
ently under these conditions, whereas the pressure depend-
ence of “stifl"-stilbene, where the phenyl rings are fixed
mn 4 five membered nng wontaining the ethylenic carbon
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atoms, the-nonradiative rate coefficients show a behaviour
almost identical to that observed-for stilbene [82].

The author is grateful to J. Troe for many stimulating discussions
-of the ideas put forward in this work. Contributions by Ch. Lienau,
R. Mohrschladt, D. Schwarzer, and P. V8hringer as well as financial
support by the Deutsche Forschungsgemeinschaft (Sonderfor-
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knowledged.
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High Pressure NMR Studies of the Kramers Turnover for Reactions in
Liquid Solutions
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Advantages of NMR techniques to obtain the rate data for simple isomerizations in liquid solutions and
advantages of using high pressure to change the viscosity of the solution are discussed. After a brief
overview of our experiments on cyclohexane, 1,1-difluorocyclohexane, and N,N-dimethyltrichloroacet-
amide, the discussion focuses on the ethylene rotation in r-cyclopentadienylethylenetetrafluoroethylene-
rhodium in several solvents. — The experimental data, as interpreted in terms of stochastic models of
isomerization reactions, indicate a Kramers turnover for the pressure dependence of the rotation of
coordinated ethylene in the Rh complex in solution. In fact, the observation of the energy-controlled
regime in this system may be the consequence of the so-called heavy metal atom bottleneck effect-which
reduces the intramolecular energy transfer within the molecule. The experimental dependences of the rates
upon solvent viscosity and/or Enskog collision frequency show that solvent shear viscosity represents only
an approximative measure of the coupling of the reaction coordinate to the medium.

1. Introduction

It is quite remarkable to note the current level of activity
[1—4] in both theoretical and experimental studies which
can trace back their origin to the seminal Kramers work
[5] published in 1940.

According to theoretical models [6—10] describing the
dynamical solvent effects on reaction rates in liquid solu-
tions, the reaction coordinate is coupled to the solvent, en-
abling the system to gain sufficient energy to cross the bar-
rier, lose energy, and become trapped into the product well.
In absence of electrostatic interactions, this coupling is pro-
duced by collisions between the solvent and solute mole-
cules. In contrast to classical transition state theories for

Ber. Bunsenges. Phys. Cherr. 95 1991, No. 3
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isomerization reactions, the stochastic models propose a de-
pendence of the transmission coefficient x upon so-called
“collision frequency” «, which reflects the actual coupling of
the reaction coordinate to the surrounding medium. Ac-
cording to theoretical models, the transmission coeflicient
is found to be a strong nonmonotonic function of « with
two different limits. Activation due to collision rate is lim-
iting and x is proportional to z for the energy-controlled
regime at fow collision frequencies. At high collision fre-
quencies in the diffusive regime, particles which have crossed
but not yet cleared the barrier may suffer collisions and
recross the barrier. The reaction in this fimut is said to be
diffusion controlled and the rate is inversely proportional

KISYYL1 91030309243 8 3.50+.25,0
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to a. Between these two regimes there is 2 nonmonotonic
transition, Kramers turnover (crossover).

In our laboratory we observed such turnover behavior
for the chair-chair inversion of cyclohéxane in several sol-
vents [11]. Hochstrasser et al. [12] have reported Kramers
turnover region in the isomerization of trans-stilbene by
using-high pressure gaseous ethane. Troe et al. [13] have
also observed Kramers turnover for trans-stilbene combin-
ing experiments performed both in liquid and in gas at high
pressure. However, the great majority of systems [2,14]
studied in dense liquid media show the high friction behav-
for.

It was not surprising that our results for isomerization of
cyclohexane were met with a considerable degree of skep-
ticism as the prevalent view was that the rapid internal en-
ergy flow would prevent observation of the low friction re-
gime in dense liquid solvents, However, in their multidi-
mensional molecular dynamics calculations, Chandler et al.
[15] have reported that observation of the inertial behavior
depends strongly on the relative strength between the inter-
molecular coupling and the intramolecular coupling. They
concluded that the RRKM picture of unimolecular kinetics
does not describe cyclohexane isomerization in liquid so-
lutions as the energy exchange between the molecule and
the stochastic bath occurs with similar ease as the energy
rearrangement among intramolecular modes.

Clearly, the inefficient internal energy flow is the key in-
gredient in order to observe the energy controlled regime
or the Kramers turnover for a system in dense solvent fluids.
Therefore, we turned our attention to systems where we may
expect an inefficient internal energy flow [16]. The theoret-
ical predictions by Marcus et al. [17] and by Uzer and
Hynes [18] about the heavy metal atom bottleneck effect
on internal energy redistribution in a molecule provided the
main motivation for our experiments dealing with Rh com-
plexes in liquid solutions. Experimental studics on several
organometallic compounds [19] have also suggested that a
heavy metal atom acted as a barrier which reduced the rate
of intramolecular vibrational energy transfer between the

Molecular Structure of Rh Complexes

(GH)RWCH,),

Fig. 1
Molecular structure of a-cyclopentadienyldiethylenerhodium and
n-cyclopentadienylethylenetetrafluoroethylenerhodium

(CH RW(CF)(CH,)

ligands, however, this effect was not observed for another
system [20]. )

In our recent studies [21,22] we investigated the effects
of temperature and pressure on the internal rotation rate of
coordinated ethylene in m-cyclopentadienyldiethylenerhod-
ium and s-cyclopentadienylethylenetetrafluoroethylene-
rhodium in several liquid solvents. Fig. 1 shows the molec-
ular structure of the Rh complexes. It was found that the
rotation of coordinaied ethylene is initially accelerated by
pressure, reaches a maximum and then decreases at high
pressure. The experimental data, as interpreted in terms of
stochastic models of isomerization reactions, indicate a Kra-
mers turnover for the pressure dependence of the rotation
of coordinated ethylene in the Rh complexes. The obser-
vation of the energy controlled regime in this system may
be the consequence of the so-called heavy metal atom bott-
leneck effect which reduces the intramolecular energy trans-
fer within the molecule. Table I summarizes the results of
our experimental studies dealing with the dynamical solvent
effects on reaction rates in dense liquid solvents.

This contribution has several goals. First, we shall discuss
the advantages of using pressure as an experimental variable
together with an indication of relative merits of high reso-
lution NMR techiques to investigate reaction rates in liquid
solution. Second, the question of Kramers turnover for
isomerization of cyclohexane and 1,1-difluorocyclohexane
will be briefly revisited. Third, the study of temperature and
pressure effects on ethylene rotation in n-cyclopentadienyl-
ethylenctetrafluoroethylencrhodium in several liquid sol-
vents will be reviewed with the aim showing that viscosity
represents only an approximate measure of the coupling of
the reaction coordinate to the reaction medium.

Experimental

For studies listed in Table 1, the experimental procedures and
equipment have been discussed in detail in the original references
[11,21—24]. Thus, only a few comments about our experiments
dealing with ethylene rotation in n-cyclopentadienylethylenetetra-
fluoroethylenerhodium will be made.

The high resolution FT NMR experiments were performed on
the 300 MHz NMR spectrometer (GN-300) which was equipped
with an Oxford Instruments, Inc. super-conducting 7.0 Tesla mag-

Table 1
Summary of recent results
System Process Resuit Ref.
Cyclohexane Conformational Kramers  [11]
Isomerization Turnover
1,1-difluorocyclohexane Conformational  ? [23]
[somerization
N,N-Dimethyltrichloro- Hindered Diffusive ~ [24]
acetamide Rotation Regime
n-cyclopentadienyldiethylene- Ethylene Inertial 24
rhodium Rotation Regime
n-cyclopentadienylethylenetetra-  Ethylene Kramers  [22]
fluvrvethylenerhudium Rutdtivn Turnover




J. Jonas and X. Peng: High Pressure NMR Studies of the Kramers Tuznover etc.

245

net. A.commercial GN-300 variable temperature.probe was used
for the temperature study and a homebuilt, high-resolution, high-
pressure NMR probe was used for the pressure study. This probe
has an exceptional resolution of 1 part in 10® for 8 mm sample
without spinning, and allows one to achieve pressures up to.5000
Jbar. The rate constants were obtained from the NMR spectra by
the.complete lineshape analysis using the iterative lineshape anal-
ysis proposed by Jonas et al. [25].

Results and Discussion

In all our studies we used-high-pressure, high-resolution
NMR techniques to investigate the dynamical solvent effects
on the reaction rates in liquid solutions. It is appropriate to
comment on the importance of using pressure as an exper-
imental variable in the studies of dynamical solvent effects
on reaction rates, as the collision frequency which reflects
the coupling of the reaction coordinate to the medium can
be related through simple hydrodynamic arguments to shear
viscosity n. The collision frequeny « in different solvents is
given by the coeflicient of friction {

a = {/m m

and the molecular mass m of the solute. An estimate for {
can be obtained by applying the Stokes law

{ = cnn(o/2) @

where o is the hard-core diameter and the ¢ is equal to 4 in
the slipping boundary limit, whereas it is 6 {or the sticking
boundary limit. Both theoretical [26] and experimental [27]
studies show that the slipping boundary conditions are ap-
propriate for cases discussed in our experiments, Therefore,
the collision {requency is given by

2n
a=—=n0. 3

In most studies the shear viscosity » is changed by the use
of different solvents but in the high pressure experiment,
viscosity can be varied by changing pressure. One has to
realize that viscosity represents only an approximative
measure of the degree of coupling of the reaction coordinate
to the reaction medium and consequently by changing sol-
vents one may influence the reaction rate by different mo-
lecular shape, size, or strength of the intermolecular inter-
actions of the solvent molecule used. Therefore, different
solvents of the same shear viscosity may not have the same
effect on the reaction rate measured. Clearly, using the same
solvent and changing its viscosity by pressure represents a
much cleaner experiment.

As most of the studies of simple isomerization reactions
involve laser spectroscopic techniques, one should also com-
ment on the relative merits of the NMR technique. There
are several advantages of using NMR to study isomeriza-
tion, and hindered rotation in hquid solutions. The system
chosen can be very simple and the molecule can be studied
in its ground state. For example, the chair-chair isomeri-
zation of cyclohexane is a relatively simple process which
can be characterized by two degress of freedom.

However, there are some disadvantages connected with
the use of the NMR line shape technique [25] to calculate
the experimental rates. For this technique to be applicable,
motions must fall within a narrow timescale and the re-
stricted range of measurable rates leads to a relatively large
error in determined activation parameters. This inherent
weakness' of the NMR lineshape analysis approach can be
overcome in studies currently in progress in our laboratory
using the NMR rotating frame technique [28] to measure
rates. For example, for cyclohexane the highest measurable
rate by the NMR lineshape technique is about 5-10* s=1,
whereas the NMR rotating frame method allows one to
measure rates up to 5-10° s,

In the following we shall discuss selected results obtained
in our studies listed in Table 1. In order to clarify our dis-
cussion we have to mention several equations used in our
analysis of the experimental data,

The stochastic models introduce a transmission coefficient
to account for the collision effect on reaction rates as

kob; =K k‘l‘S!‘ ) @)

where ko, is the observed isomerization rate and kqsy is that
predicted by the classical transition state theory given by

BT (zt0)

with the symbols having their usual meaning,

The relationship between the transmission coefficient x
and the solvent viscosity provides a practical way to discuss
the isomerization dynamics. Since x and krsr cannot be de-
termined independently [11,23], we must evaluate the ratio
of k(n)/x(ne). The normalized transmission coefficient can
be obtained from

K@) _ k@) .
k(o) k(o)

where #(10) and k(io) are the transmission coefficient and
the observed rate constant at a chosen reference point. Py
is pressure at the reference point.

Fig. 2 shows the schematic dependence of the normalized
transmission coefficient upon viscosity y and AV, as gen-
erated from the experimental data for cyclohexane isomer-
ization [11,23] in several dense solvents. In our original
work we calculated the AV = —1.5 em*/mol which com-
pares favorably with the value AVi% = —19cm?/mol given
by Le Noble [11]. From Fig. 2, we see that the actual de-
pendence of the normalized transmission coefficient is a sen-
sitive function of the AV%; value. In addition, we also dis-
cussed in detail why A}y should be pressure independent.
Nevertheless, even if our estimate of Alf; was off by
0.5-1.0 cm’'mol, the experimental data will still exhibit
inertial behavior for isomerization of cyclohexane in dense
liquid solvents.

The situation is not that straightforward for isomerization
of 1,1-difluorocyclohexane (DFCH) as shown in Fig. 3. For

((P—PO)AV{‘;T) ©)

RT
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DFCH .isomerization we assumed AV#&r = —1.5 cm*/mol
basing our estimate on analogy with cyclohexane. It is un-
likely that-AV+%r for DFCH isomerization is greatly different
from-that.of cyclohexane. However, we cannot rule out the
possibility that AV may be —2.0 or ~2.5 cm*/mol which
would bring the isomerization clearly in the diffusion con-
trolled regime. Therefore, on the basis of the experimental
data [23] obtained, we cannot determine with certainty
whether DFCH isomerization exhibits inertial behavior.
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Fig. 2

Schematic dependence of normalized experimental transmission
coeflicient & (n)/x (3cP) upon shear viscosity and AV for confor-
mational isomerization of cyclohexane at 228 (for details, see
Ref. [11])
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Schematic dependence of normalized experimental transmission co-
efficient & (57)/x (3cP) upon shear viscosity 5 and AVy&y for confor-
mational isomerization of 1,2-difluorocyclohexane in the tempera-
ture range 218—253 K (for details, sec Ref. [23])

In conirast to the results for cyclohexane and DFCH we
found that the hindered rotation of N,N-dimethyltrichlo-
roacetamide [24] falls into the diffusive regime. The pressure
dependence of the hindered rotation about the amide C—N

bond of N,N-dimethyltrichloroacetamide (DMTCA) has
been studied at 282.3 K in n-pentane and methylcyclohexane
solvents using the high-resolution, high-pressure nuclear
magnetic resonance (NMR) technique. The experimental ro-
tation rate k decre¢ases with increasing pressure in both sol-
vents and the correlation of the rates with solvent viscosity
n shows that the rotation falls into the strongly coupled
diffusive regime. Interpretation of the experimental & vs.
dependence in terms of the Kramers model fails to account
for the leveling off of the rate constant at high viscosities.
The Grote-Hynes theoretical model [29], which assumes
frequency-dependent friction, reproduces well the observed
rate behavior with viscosity of the solvent.

Another study [22] listed in Table 1 dealt with the effect
of temperature and pressure on the internal rotation rate of
coordinated ethylene in n-cyclopentadienylethylenctetra-
fluoroethylenerhodium in liquid solution. The solvents used
in this study were n-pentane-dy,, carbon disulfide and me-
thylcyclohexane-dy,. The activation energy (56.3 & 0.84 kJ/
mol) for the internal rotation of ethylene was independent
of solvent and pressure as determined from conventional
Arrhenius type plots and isoviscosity plots, It was found
that the rotation of the coordinated ethylene is initially ac-
celerated by pressure, reaches a maximum and then de-
creases at high pressure. The strong pressure dependence of
the observed activation volume for the rotation suggested a
strong collisional contribution to the activation volume and
the presence of dynamical solvent effects. The experimental
data, as interpreted in terms of stochastic models of isom-
erization reactions, indicated a Kramers turnover for the
pressure dependence of the rotation of coordinated ethylene

« in the Rh complex in solution. In fact, the observation of

the energy-controlled regime in this system may be the con-
sequence of the so-called heavy metal atom bottleneck effect
which reduces the intramolecular energy transfer within the
molecule,
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The preexponential factor k* as a function of solvent shear viscosity
at 258.2 and 273.2 K for methylcyclohexane-dy, {O), n-pentane-d,;
(A) and CS, (O)
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'In the following section, we shall focus on.the experimen-
tal finding that the observed pressure dependence of ethylene
rotation of the Rh complex studied was very different in the
methylcyclohexane solvent than the dependence obtained
for the CS., and n-pentane solvents. This striking difference

in viscosity dependence for the solvents used is.depicted in-
Fig. 4, which plots the preexpontential factor k* as a func-.

tion of solvent viscosity n for the ethylene rotation in

r-cyclopentadienylethylenetetrafluoroethylenerhodium,

The conventional definition of the preexponential factor [8]
is used

ko = k* exp(—Eo/RT). . 0

Fig. 4 shows that within experimental error, the preexpo-

nential factor is almost the same for CS; and n-pentane-d,;

solvents. One should also mention that the Kramers turn-
over occurs at relatively high viscosity ~7 cP for methyl-
cyclohexane-d,, while viscosity is 2 cP for the turnover point
both for n-pentane-d;; and CS, solvents. The. Skinner-
Wolynes model [8] fits well the experimental data for CS;
and n-pentane-d;; solveats but it.does not fit the data for
the most viscous solvent of methylcyclohexane-dy,, It is ev-
ident from Fig. 4 that the preexponential factor k* is rela-
tively inscnsitive to viscosity changes in methylcyclohexane
solvent, particularly for high.viscosity values.

In order to look for an explanation of this experimental
‘finding, we follow the suggestion by Garrity and Skinner
[30) that viscosity increases faster than the collision fre-
quency for high packing fractions. Therefore we calculated
the Enskog hard sphere collision frequency «g for the sol-
vents used and plotted ap as a function of viscosity in Fig. 5,
Indeed, this figure shows that the viscosity of methylcyclo-
hexane-d,, solvent increases rapidly while the collision fre-
quency ag falls in the same range as the collision frequency
for CS; and n-pentane-d,; solvents. If one plots the preex-
ponential factor k* versus the Enskog collision frequency

ag as shown in Fig. 6, one concludes that the results for thy.

methylcyclohexane solvent are consistent with the other two
solvents. In fact, the experimental k* values span the same
collisional frequency range, and the Kramers turnover oc-
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Enskog collision frequency «¢ as a function of shear viscosity for
n-pentane (A); carbon disulfide (J) and methylcyclohexane (O)
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The preexponential :factor £* as a function of Enskog collision
frequency «p for ethylenc rotation in (CsHJRW(C,H)C,Fy) at
258.2 K and 283.2 K for methylcyclohexanc-dy (O); n-pentane-d;;
(A) and CS; (O)-

curred at 6—7 ps—'. However, so far there is no explanation
why &* in methylcyclohexane solvent is consistently lower
than its values in the other two solvents.

Naturally, there may be other reasons for this unusual
behavior for the methylcyclohexane solvent. For example,
in our earlier high-pressure studies [31] of self-diffusion and
viscosity in liquid methylcyclohexane in the dense liquid
region, we found that the rough hard sphere model is not
strictly applicable for this liquid. In order to obtain an agree-
ment betweeji experiment and theory, we had to assume that
the degree ¢f coupling between the rotational and transla-
tional motions is strongly temperature dependent. One
should als point out that it has been reported in the study
of stilbene: isomerization [32] that the data point for meth-
ylcyclohexane solvent deviated strongly from the relation-
ship found for other solvents.

In spite of the phenomenological nature of our discussion,
we can conclude that solvent viscosity represents only an
appreximative measure of the degree of coupling of the re-
acticns coordinate to the reaction medium and the rela-
tionship between reaction rates and solvent shear viscosity
may break down for high viscosity solvents at high packing
fractions. Experiments aimed at improving our understand-
ing of isomerization processes in highly viscous liquids are
in progress in our laboratory by using the NMR rotating
frame techniques and extension of the high pressure limit
from 5 kbar to 10 kbar.

This work was supported in part by the National Science Foun-
dation under grant NSF CHE 85-09870.
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* Fenitosecond Studies of the Photoisomerization of cis-Stilbene in Solution
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Femtosecond laser studies on cis-stilbene photoisomerization in alkane solvents shew a weak friction
dependence on the excited state lifetime. A possible barrier crossing process is indicated when these results
are compared with various potential models, The anisotropy values of the transient absorptions allow the
assignment of the various excited states to A type in C, symmetry. Anisotropy measurements in the regions
of product ground state absorptions demonstrate a high alignrient between reactant cis and product trans
and a low alignment between cis and product dihydrophenantarene (DHP) transition dipoles. These results
indicate a significant angular displacement of the ethylene bond during isomerization. In addition, time
resolved absorption studies detecting product trans fluorescence estimate an initial internal temperature
of 725 4 100 K which decays with ca. 14 ps time constant.

Introduction

The isomerization of stilbene has bezn extensively studied
as a model for photoinduced molecular rearrangement and
as a probe of solvent effects associated with isomerization
and molecular rotation [1 - 5]. The isomerization of trans-
stilbene in the first excited state mvolves a barrier crossing
process which takes many tens of picoseconds depending
on solvent [4]. Vibrational cooling of excited trans-stilbene
molecules occurs in about 20 ps, which is shorter than the
excited state lifetime [5]. Recent femtosecond experiments
have allowed the study of the isvmerization from the us side

Ber. Bunsenges. Phys. Chem. 95 ¢1991, Av. 3
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of the potential surface which has fong been assumed to be
barrierless as shown in Fig. 1 [1,2]. The cis-stilbene excited
state decays in ca. 1 ps in alkane solvents, forming cis, trans,
and dihydrophenanthrene (DsIP) with quantum yields of
0.55, 0.35, and 0.1 respectively [6]. The rapid disappearance
of the excited cis population mukes possible the observation
of spectra and dynamics of intermediates and product
for ned during the isomerization [2,7]. Vibrational energy
transfer ma;, also be observed after the disappearance of cis
population [8]. In this paper several results are discussed
which were obtainad by transient absorption eaperiments

VUUS-9021,91,0303-0248 § 3.50 +.25,0
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which probeé:optically excited: cis-stilbene and fluorescence:
experiments which measure the appearance of trans-stilbene
by exciting the trans molecules produced by. the isomeri-
zation and observing their fluorescence.
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Fig. 1

Potential encrgy diagram for stilbene ground and excited states
showmg the transient absorption and fluorescence detection ex-
periments

Experimental

The laser system, transient absorption, and fluorescence experi-
ments have been described in detail elsewhere [2,8]. Briefly,a CPM
laser which is amplified in a four stage Nd: YAG pumped amplifier
and then frequency doubled is used to excite cis-stilbene at 312 nm,

For the transient absorption ¢xperiments probe wavelengths in
the visible are obtained by continuum generation in a cell of H,0.
Narrow slices of the continuum are selected with a set of interfer-
ence filters. This probe can also be frequency doubled to obtain
wavelengths in the ultraviolet.

In the fluorescence experiment a seccond pump beam at 312 nm
is used to excite the trans-stilbene molecules created by the first
pump pulse. The fluorescence from the excited trans molecules is
collected by a photomultiplier tube perpendicular to the pump
beams,

A half-wave plate in the pump arm of both experiments allows
the rotation of the pump beam polarization to give the parallel and
perpendicular polarization geometries for anisotropy studies.

Friction Dependence of Cis Relaxation

Transient absorption measurements carried out with cis-
stilbene in a series of n-alkane solvents and at a number of
probe wavelengths show a weak friction dependence [2].
The excited state lifetime ranges from about 1 ps in hexane
to 1.4 ps in hexadecane. Cis-stilbene exhibits transient ab-
sorption spectra in the visible/IR and ultraviolet regions of
the spectrum. The visible/IR transient has peaks at 650 nm
and 450 nm. The ultraviolet transient spectrum starts
around 390 um increasing toward higher energy where it
overlaps with the ground state spectra. The viscosity data
were taken at 650 nm in the visible and at 350 nm in the
ultraviolet. The friction dependence-is similar for both the
visible and the ultraviolet transients. In fact, across the entire
spectrum the transient absorption rises with an instrument

function limited rise and decays with a lifetime characteristic
of a particular alkane solvent. This indicates that any spec-
tral shift arising from the population moving along a bar-
rierless potential energy surface does not occur within our
time resolution _ .
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Fig. 2
Three possible models for the cis-stilbene ground and excited state
surfaces

Models for cis-Stilbene Isomerization

The transient absorption data allow the comparison of
the isomerization process with some simple models, Three
models which could possibly describe the excited state sur-
face are shown'in Fig. 2. Because cis-stilbene is not planar
due to the repulsnon of the pheny! ring hydrogens there must
exist a double minimum around the 180° (cis) configuration
as is shown in b, and ¢ of Fig. 2. The first potential in Fig,
2 shows an inverted symmetric potential for the excited state.
The Brownian motion ¢f a particle in a harmonic force field
was first considered by Chandrasekhar [9]. The motion of
a particle on an inverted well follows as a straightforward
extension of this form [2]. The decay curve fof excited state
cis-stilbene in hexane may be modeled as Brownian motion
on an inverted well of frequency w = 4 x 10%? s~!, However,
when the empirical angular friction factor # appropriate for
hexane (8 = 1.18x 10" s=") is replaced by the value ap-
propriate for hexadecane (8 = 5.88x 10 s~! [10]) the
model predicts a much longer lifetime than is observed ex-
perimentally. This model also predicts the wrong functional
form for the decay with the theoretical curves being highly
nonexponential due to Brownian motion on top of the po-
tential surface.

The second potential drawn in Fig. 2 is a displaced in-
verted harmonic well. Brownian motion on this model po-
tential surface has many of the characteristics of the first
surface in Fig. 2. It predicts a stronger friction dependence
than observed experimentally. It also predicts improper
functional forms for the decay of electronically excited cis-
stilbene.

The third model in Fig. 2 1s one in which cs-stilbene is
excited into shallow wells displaced from 180 . A compari-
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son of the data to a one dimensional Kramers equation gives
a.barrier-on the order of @ = 3kT [2]. With a barrier this
size Kramers theory may not be valid but'it does provide a
qualitative prediction, along with the absence of excited cis-
stilbene spectral shifts, that the region where cis-stilbene
manifests its transient absorption at times in excess of a few
hundred femtoseconds may be a shallow well on the poten-
tial surface,

These results in the non-polar alkane solvents indicate
ithe possible existence of a small barrier to isomerization in
the cis side of the excited potential surface. Recent experi-
ments by Fleming and co-workers show an early spectral
shift in alcohol solvents [11]. This indicates that the poten-
tial surface in these polar solvents is barrierless and confirms
the notion that the shape of the cis-stilbene excited state
surface is solvent dependent.

State Assignments

The measured anisotropy signal in a transient absorption
experiment is:

S (O M)
M0 =70 200

where 7;(t) and I, (¢) are the signal intensity for parallel and
perpendicular pump and probe beam polarization respec-
tively. This anisotropy measures the quantity:

r(t) = 04 (P, [cos® ()]

where @(¢) is the instantaneous angle between the transition
:dipoles in the pumpprobe transitions, The absorption ani-
sotropy provides information on the symmetry of the states
involved in the two-photon pump probe process. The ex-
citation of cis-stilbene at 312 nm involves an A—B type
transition. The visible transients probed around 650 nm in
both cis and trans-stilbene have anisotropies for the ground
to excited state dipoles near 04. A value of r = 04 is the
maximum for this type of experiment. This indicates that
the transition dipole of the excited transition is nearly par-
allel to that for the transition dipole pumped at 312 nmn.
The cis-stilbene ultraviolet transient has r = 0.15 for a 350
nm probe. The ground state of stilbene is of A type and the
first excited state is B therefore the positive anisotropics
indicate the upper levels in these pump-probe experiments
are of A type because excitations of A—B—B would give
=-02,

Reaction Coordinate

The ultraviolet absorption of cis-stilbene overlaps the
ground state absorption of trans-stilbgne in the region of
330 nm. Anisotropies in this region give information on the
reaction coordinate by measuring the alignment between the
reactant cis and product trans molecules. The transient ab-
sorption decay and anisotropy in hexadecane at 330 nm 1
shown in Fig. 3. In the region between 420 nm and 520 nm
the spectrum of dihydrophenanthrene (DHP) is observable

after the decay of the.cis-population. The DHP is formed
by a ring closing of the phenyl rings. In both spectral regions
the excited cis signal decays in 1.4 ps in hexadecane to a
long time product absorption as seen in Fig. 3. This longer
time absorption partially decays due to vibrational cooling
i.e. a spectral shift taking tens of picoseconds. The cis-stil-

-bene isumerization allows the measurement of the reaction

dipole for two separate reaction pathways. The product an-
isotropy at the earliest times remains high, r = 0.20 for cis
to trans and is r = 0.17 for cis to DHP, At longer times the
anisotropy decays due to rotational diffusion but in hex-
adecane the conventional rotational relaxation time is long
enough that it does not influence the interpretation of the
alignment of reactant and product.
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Magic angle transient absorption decay curves (solid lines) and
anisotropics (open circles) for excited cis-stilbene in hexadecane in
the regions of trans-stilbene ground state (330 nm) and the dihy-
drophenanthrene absorption (480 nm)

The trans-stilbene Sy—S; transition dipole is known to
lie along the longest axis of the molecule [1%]. The transition
dipole for cis-stilbene has not been measured but a recent
calculation predicts the dipole to lie close to the ethylene
bond [13]. The cis and trans transition dipoles for the
ground to first excited state are shown in relation to the
molecules in Fig. 4. A simple exiton model predicts the DHP
{S;—S,) transition to be directed perpendicular to the C;
symmetry axis and along the longest polyene asis [14]. The
measured anisotropies at times after the decay of the excited
cis population are quite high for both trans (r = 0.2) and
DHP (+ = 0.17). This indicates substantial alignment be-
tween the reactant and product transition dipules.
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One model to explain the high product anisotropies con-
siders the reaction product dipoles to lie on the surface of
a cone around a line along the reactant cis-stilbene ethylene
bond. The data indicate a cone angle of about 35° for trans-
stilbene product and 38° for. DHP in such a model. If the
isomerization to trans-stilbene proceeded as a simple rota-
tion about the double bond, as shown in Fig, 4, a cone angle
of 60° would be predicted from the trans and cis transition
dipoles. This would lead to an anisotropy of r = --0.05.
Since the measured anisotropy is much greater it is possible
that the isomerization is not a :simple rotation about the
double as is usually assumed. The results require that the
ethylene bond rotate by an angle of ca. 25° during the isom-
erization in order to produce this high anisotropy. The DHP
product anisotropy of r = 0,17 indicates this reaction path-
way also must involve a significant rotation of the ethylene
bond being a lower value than is expected for a simple ring
closing with the ethylene bond axis fixed in space.

Fig. 4

Transition dipole directions for the isomerization of cis-stilbene.
The simple rotation about the double bond relating these structures
{cis, twisted, and trans) predicts a much lower anisotropy than is
observed

A full interpretation of the anisotropy must consider over-
all rotations in-the laboratory frame about a definite axis
fixed in each molecule. To minimize the friction on the cis
to trans isomerization , the whole molecule may be forced
to rotate. Furthermore, the conrotatory motions of the
plienyl rings of a cis-like structure must generate a torque
that could lead to a reorientation of the whole molecule.

Such effects involving the coupling of internal and overail
motions have been-considered by Moro for butane isom-
erization [16]. Our results indicate a reorientation of the
ethylene bond in both the cis to trans and cis to DHP re-
actions suggesting that if the motion is dominated by the
coupling of internal and overall rotations it is most likely
to occur as a result of phenyl ring rotations common to
both the DHP and trans reaction coordinates. Additional
experimental-and theoretical efforts are needed to separate
these various angular motions.

Vibrational Cooling

Trans-stilbene molecules formed from the isomerization
of cis can have excess internal energy. The ground state
spectrum of the trans-stilbene product shifts with time con-
stants on the order of 20 & 10 ps [8]. The shift in the spec-
trum and the decay of the longtime absorption in the tran-
sient absorption curves results from the difference between
the extinction coefficients of the hot and cold molecules. The
decay is slightly longer toward the absorption peak and
faster on the edges. These observations suggest that the in-
ternal energy resulting from the isomerization can be gauged
by assuming a definite initial temperature achieved by dis-
tributing the excess energy over a substantial fraction of the
internal modes,

The fluorescence experiment on cis-stilbene in solution
was first done by Yoshihara and coworkers but with insuf-
ficient time resolution to measure the appearance of trans-
stilbene [15]. The time resolution of the solution experi-
ments presented here is able to detect the ground state trans-
stilbene formation. The fluorescence experiment provides a
good measure for the cooling of trans molecules. As seen in
Fig. 1 after the formation of excited cis-stilbene by the pump
beam hot trans molecules are formed in ca. 1 ps. The hot
ground state trans molecules are excited after a time delay
(7) between the pulses and the integrated fluorescence signal
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Magic angle fluorescence intensity of trans-stilbene as a function of
delay time between the excitation pulse which excites ground state
cis-stilbene and the second pulse which excites the formed trans-
stilbene product. The slow nise of the signal anises because the hot
trans molevules genctated imtially do not fluvtesce efficently
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is detected. For time delay t =00 the fludrescence excitation
pulse probes the room temperature trans molecules. Because
the pump and fluorescence excitation beams are of approx-
imately equal energy the trans fluorescence signal will be at
4 minimum at time zero and rise nearly symmetrically on
either side of zero delay as seen in Fig, 5. The data in Fig. 5
is for cis-stilbene in hexadecane. The solid line fit of the data
is from a model that includes the variation of the fluores-
cence quantum yield with temperature [8]. The quantum
yield changes as a result of the barrier to isomerization
which renders the fluorescence temperature dependent, The
fit models the temperature decay as a single exponential with
a lifetime of 14 ps. The data for cis-stilbene in hexane is
identical with that for hexadecane indicating that the cool-
ing of the molecules is not noticeably solvent depenac:t for
these alkane solvents.

Energy Partitioning

From the fluorescence experiment it is possible to obtain
an estimate of the initial internal temperature of the hot
trans molecules. Acceptable fits to the data are found for
temperatures of 725 K + 100 K [8]. A calculation assuming
that the excess energy is distributed over all the internal
modes of the molecule predicts an internal temperature of
1325 K following the absorption of one 32050 cm™! photon.
The ca. 600 K difference between the measured temperature
and the maximum temperature suggests.that the isomerizing
stilbene molecule loses a significant portion (about 65%) of
its energy into the solvent very rapidly i.e. before the ap-
pearance of trans. The rest of the photon energy is found in
the internal modes of the trans molecule which cool with
the above mentioned 14 ps time constant. This is the first
time that energy partitioning between internal and external
friction pathways has been identified experimentally and the
result presents a significant challenge to theory.

Conclusions

The femtosecond experiments on cis-stilbene discussed
here lead to a better understanding of the isomerization
process. The cis molecules are excited onto a potential sur-
face which may be barrierless or have shallow minima
nearby depending on the solvent system. The isomerization

to trans-stilbene and dihydrophenanthrene requires rotation
of the ethylene bond in the laboratory frame. The trans-
stilbene and DHP are formed with considerable internal
energy. The rates of appearance of trans and DHP are not
significantly different from the disappearance of excited cis.
The hot trans molecules having already lost two-thirds of
their excess energy when first detected cool with a charac-
teristic time of about 14 4 3 ps.
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Two aspects of barrierless processes are discussed. Adiabatic processes are discussed briefly in the context

of diffusion to a sink. Second, a multi-level Redfield theory is developed as a model for rate processes

where vibrational relaxation and dephasing occur on the time scale of the electronic process. The results
of numerical calculations are presented and deviations from the Golden Rule predictions discussed.

Introduction

Kramers in his semingl 1940 paper [1] considered the
problem of escape over a potential (or free energy) barrier,

Tt is 4 natural extension of his ideas to include processes

that have little of no intrinsic barrier, Because of the intrinsic
time scale of nuclear motion, barrierless processes in chem-
istry and biology are very rapid and their study has ad-
vaiiced in parallel with developments in ultrafast laser spec-
troscopy. Examples of barrierless processes in chemistry in-
clude some isomerization reactions, a range of electron
transfer reactions as well as many diffusion controlled re-
actions in solution. Barrierless reactions also seem to be
common in biological processes. For example, the isomeri-
zation reaction rigering the visual process and the rebind-
ing of CO.to heme in myoglobin are believed to lack bar-
riers. Perhips the most striking barrierless reaction in nature
is the primary charge scparation step -in photosynthesis,
Here the ultrafast initial electron transfer step (~3 ps) ac-
tually speeds up 2—4 times as the temperature is lowered
from 300 K to 10 K [2]. Electronic energy transfer between
the prosthetic groups of the bacterial reaction center is even
faster than the electron transfer; recent estimates from hole
burning [3] and ultrafast [4] spectroscopy place the energy
transfer rate in the 3050 fs range. In this case the conven-
tional separation between electronic and vibrational phase
relaxation and energy relaxation time scales is unlikely to
exist.

In descriptions of barrier crossing processes two types of
approaches have been conventionally employed. For non-
adiabatic processes the Golden Rule is used to calculate the
rate, whereas for adiabatic processes in the presence of dis-
sipation Kramers theory provides an appropriate descrip-
tions. In the following section we briefly sketch theoretical
models appropriate to barrierless processes in these two lim-
its. In fact the second approach we describe — multi-level
Redficld theory — is applicable to both regimes and to sys-
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**) Present address. Department of Chemistry, Columbia Univer-
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tems with or without barriers, However, in the present paper
we restrict ourselves to systems where the barrier is rather
small,

Theory
1. Adiabatic Processes

In the adiabatic case, when the barrier is very small or
lacking, Bagchi, Fleming and Oxtoby [5,6] proposed a the-
ory in which the reactive motion is modeled by the damped
motion of a Brownian particle on a potential surface. The
decay of population from the-ititial state occurs through a
coordinate dependent sink. One of the most striking char-
acteristics of such processes is the potential lack of time scale
separation betveen reactive mot on and the inverse “rate”
of reaction. Cleacly in this situation non-steady state dy-
namics might be rather common and the form of the pop-
uvlation decay depends on the competition between diffusive
motion toward the sink and removal of population from the
sink region. Many aspects of the diffusion to a sink model
have recently been discussed in detail [6] and here we re-
strict ourselves to some comments on the form of the pop-
ulation decay in various regimes.

In more quantitative terms the dynamics of the popula-
tion decay can be described in terms of two rate constants,
the time averaged rate, ky, and the long time rate k. These
are given by

o0

k' = [ P@dt
0

and

k= — lim —Qt—lnP(t)

[fad- ]

where P(t) is the population at time t. The dynamics of
adiabatic barrierless processes are controlled primarily by
the dimensionless parameter &y = kol/itw® Here k, is the
decay rate at the sink, { is the friction coefficient, i the
reduced mass and w the radial frequency of the potential
surface. The parameter k, effectively determines how long it

WS-YU21, 91,U303-0253 § 3.50+.25,0
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takes to attain a steady state condition, after which the pop-
ulation decay is exponential. A quantitative analysis can be
made via an eigenvalue analysis of the Smoluchowski equa-
tion [6], where the eigenvalues correspond-to the popula-
tion decay rates. For small values of &, only the smallest
eigenvalue contributes to the observed decay due to the
large gap between the lowest and next to lowest eigenvalues.
As ky is increased, the gap becomes smaller and more than
one eigenvalue can fall within the dynamic range of the
measurement. An interesting feature of this analysis is that
in the region of large k;, the density of the eigenvalue spec-
trum may be large enough that the observed dynamics will
once again appear exponential due to the inability of the
instrument to resolve the various decay components. Thus
the appearance of exponential population decay does not
necessarily invalidate the possibility of non-steady state dy-
namics, Recent experiments on the isomerization of cis-stil-
bene are consistent with this analysis [7] although the pres-
ence or absence of a small potential barrier is not fully es-
tablished at present [7—9]. Fluorescence decays in the
lowest viscosity solvents appear exponential, but in the most
viscous solvent (largest ko), decanol, as Fig. 1 shows the
decay is clearly non-exponential consistent with this solvent
lying in the intermeditate & range.

9
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Fig. 1

Fluorescence decay of cis-stilbene n decanol detected at 430 + 5
nm. The intensity scale is logarithmic and the decay is clearly non-
exponential

An extensive review of barrierless dynamics in the context
of a diffusional approach has recently appeared and inter-
ested readers are referred to that article for further details

[6].

2. Nonadiabatic Processes

The diffusion to a sink model can roughly account for
some effects of nonadiabiticity via finite decay rate models
[6], but the approach is purely classical. In this section we
sketch our initial efforts to develop a fully quantum me-
chanical model for such processes. Much effort has been
expended over the past decade in attempting to take into
account the role of nuclear motion, including collective sol-

vent or lattice modes, in determining the details of the dy-
namics. Much of this work, especially in the field of electron
transfer has taken a semi-classical path, in which the motion
along-a specific nuclear coordinate — the “reaction coor-
dinate” — is treated classically incorporating the effects of
friction provided by the very large number of orthogonal
degrees of freedom. In such a description quantum mechan-
ics enters only at the point of intersection between the dia-
batic reactant and product surfaces. At this configuration
the Schroedinger equation is solved to compute the prob-
ability of making a transition from one surface to another.
This standard surface hopping model has proved valuable
in understanding the role of friction in non-adiabatic proc-
esses and in understanding the transition.from non-adia-
batic to adiabatic behavior in electron transfer [10]. In ul-
trafast processes, even in the condensed phase at high tem-
peratures, the possibility exists that quantum interference
effects play a role in the dynamics, The description of such
effects does not fall in the realm of the standard surface
hopping or Landau-Zener approach. Quantum effects will
be important when there are strong resonances or when
phase is preserved on the time scale of the electronic tran-
sition matrix element.

Onuchic and Wolynes [11] have recently presented a
semi-quantitative discussion rooted in trajectory based ar-
guments to describe quantum effects on dynamics. In this
paper we introduce a density matrix formalism based on
Redfield relaxation theory [12], appropriate to electron or
electronic energy transfer in molecular systems and which
enables quantitative exploration of many of the issues raised
by, Onuchic and Wolynes. Redfield’s theory has been widely
used in the field of magnetic resonance and to a lesser extent
in optical spectroscopy [13]. By explicitly treating a subset
of nuclear degrees of freedom quantum mechanically, and
through a judicious choice of representations, we develop a
multi-level theory that is valid for arbitrarily strong elec-
tronic coupling and properly takes account of the influence
of finite vibrational and electronic dephasing rates and vi-
brational energy relaxation rates. Thus, the theory has the
property that it interpolates between the coherent and in-
coherent limits of transport for sufficiently weak damping
and between the adiabatic and nonadiabatic rate descrip-
tions for over-damped systems. A significant feature of our
approach is that parameters relating to vibrational relaxa-
tion and dephasing time scales are entered in the site rep-
resentation where some experimentalist’s intuition can be
brought to bear in setting the magnitudes of the parameters.
In addition, the light-matter interaction is included explicitly
in the Hamiltonian so that in experiments involving optical
preparation the initial state may be properly specified.

3. Formalism

A detailed description of the formalism will be given else-
where [14]. Here we give some brief details of the approach
and set up a simple model of electron transfer.

The effective Hamiltontan considered as « model for elec-
tron transfer between electronic states |1, and 2] is
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H =[Hy(Q)+ V1(q, Q115 1]+ [H:(Q) + V2(g. 2)]12) 2
+ 015 2+ 12> <1{] + Hse.

Q refers to the single system coordinate (i.e. “reaction coor-
dinate”) and g to the set of bath coordinates. In what follows,
the reaction coordinate is treated quantum mechanically in
order to properly incorporate the effect of finite vibrational
relaxation and dephasing times. The remaining degrees of
freedom -(solvent or lattice modes) are assumed to relax
quickly compared to motion along Q and are thus treated
as a thermal reservoir. The operators H; (i = 1,2) are effective
Hamiltonians for sites 1 and 2 and are averaged over the
bath variables. V;(q,Q) is the operator coupling state (i) to
the bath and represents fluctuations in the system energies
from their canonical averages. ¥;(q,Q) is chosen so that
both population relaxation and pure dephasing interactions
are present, the exchange interaction giving rise to electron
transfer is denoted by J. Finally, Hgr is the system field
interaction which determines the nature of the initially pho-
toexcited state.

In second quantized notation, the system Hamiltonian is

Hyp = 4{|1> <11 = [2) Q1} + g1 (b+b*) 1) 1]
+ g2(b+b%)12) Q2
+ J{I11> Q| + J{I1> <2| + |2) <11}

where 4 = E, + g}y — (E; + g3/wy) is the energy dif-
ference between the origins of the two excited electronic
states and g; is the displacement (in energy units) of excited
state i. b* and b are the creation and annihilation operators
for the system coordinate,

The system-bath interaction, V(g,0Q), i is parametrlzed by
matrix elements of the fluctuating bath variables between
the system states. The rate constant for vibrational relaxa-
tion between states n and n— 1 is given by k,—,_, = ny”
where y” is the off-diagonal fluctuation constant. Similarly
the pure dephasing rate for levels m and » is given by
k%, =(m—n)y* where y is the diagonal fluctuation con-
stant.

The picture described by our model Hamiltonian is thus
two displaced wells, each with a manifold of vibrational
levels, undergoing relaxation and dephasing coupled by a
purely electronic interaction that leads to a splitting of the
surfaces in the crossing region. The multilevel nature of the
model does not allow for an analytical solution for the dy-
namics, thus we rely on numerical procedures. However, the
dynamics that emerge provide a realistic description of the
competition between dissipative processes such as popula-
tion relaxation and pure dephasing and coherent exchange.
A detailed discussion of the strategy for solving for the dy-
namics of our model will be given elsewhere [14]. In brief,
we choose to work in a basis that diagonalizes that part of
the Hamiltonian that depends only on the system coordinate
and the electronic exchange interaction. We call this rep-
resentation the eigenstate representation and the original
representation the site representation. By choosing an ap-

propriate form for the fluctuation operators, V;(q,Q), we
can calculate the appropriate energy and phase relaxation
rates in the site representation. To properly describe ‘the
dissipative processes in the eigenstate representation, we
perform the same canonical transformation on the fluctua-
tion operators that we used to diagonalize the system Ham-
iltonian [15]. We thus transform the problem of two man-
ifolds undergoing electron transfer and relaxation to a single
manifold undergoing only relaxation processes.

The dynamics of the system are found by solving the
Redfield equations for the reduced density operator in the
eigenstate representation [12, 16]. This involves treating the
system-bath interaction to secound-order. The appropriate
equations are of the form

dy= —iwy+ % Ryui0u-

The elements of the Redfield tensor (Ryx,) describe the var-
ious relaxation processes involving the system eigenstates.
It is important to note that the states labelled by i,j are
admixtures of vibronic states belonging to states |1> and
12).

Once the dynamics are computed by finding the eigen-
values and eigenvectors of the Redfield tensor, we transform
back to our original basis of site states and trace over the
reactant manifold to obtain the population-of state |1). In
addition to correctly incorporating quantum effects, which
arise from the persistence of phase coherence, the procedure
described above is nonperturbative in the electronic cou-
pling, J, and thus interpolates between the weak and strong
coupling limits.

Numerical Results

Fig. 2 shows adiabatic potential surfaces for a typical
system we have studied. Note that the diabatic surfaces cross
close to the minimum of the reactant well and thus the
electron transfer process is activationless (i.e. at the Marcus
maximum),

The first set of calculations we describe uses a very short

excitation pulse to prepare an initial state that can be written
as a coherent superposition of vibronic states. The transition
dipole operator is chosen such that only vibrational states
in state |1) are initially excited. The pulse is short enough
that the entire bandwidth is coherently prepared, leading to
a wavepacket that is localized at the value of Q correspond-
ing to the minimum of the ground state geometry (Q = 0).
The populations and phase coherence are determined by the
appropriate Franck-Condon factors, via
6= —[Hsr0l; Hse= —pE(D).
This is the appropriate form for the Liouville equation in
the impulsive excitation limit (1.¢. when the temporal width
of the excitation pulse Is short compared to any free motion
of the system).

The population remaining in state |1, as a function of
time was calculated as the electronic coupling, J, was pro-
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Initial and final state potential surfaces for a typical activationless
process. The minima of the two states are at Q = 10,72, Here @
is a dimensionless coordinate defined by Q = (Mw/h)'?q where M
is the mass w the frequency and ¢ the actual coordinate
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1/e decay time vs. the square of the electronic coupling calculated
from Redfield equations. The Golden Rule prediction is shown for
comparison. Parameters are: 0, = @, = 190em™", 4 = 209 cm™!,
g = =95cm™), g, = 95cm™Y, T = 298 K. The diagonal and off-
diagonal fluctuation constants are y> = 9.0 em~'y"2 = 4.0 cm™",
0 = +0.72 for states {1 and |2), respectively. The dashed line
shows the extrapolation of the Golden Rule J* dependence

gressively increased. In a multilevel system, such as de-
scribed here, the effective coupling strength will vary with
each initial level due to varying Franck-Condon factors be-
tween states in different manifolds. If dephasing is much
faster than the time scale of the electronic coupling then the
Golden Rule expression should be valid, with the rate con-
stant given by

=2 papey i~
k= h SFQ (E)® + (hI)?

where FC'is the Franck-Condon factor, and $E the energy
mismatch-between initial and final vibronic levels, I' is the
level width and contains contributions from both.7; and T3
processes. Thus the Golden Rule rate scales as J4T for small
SE (near resonance case), however for finite SE the rate
initially increases with increasing level width, then turns
over. Fig. 3 shows how the Redfield rate, defined as the 1/
e-decay time, scales with J2 In this particular system, the
rate follows the Golden Rule up to about J = 15 cm™~". For
higher J values the rate becomes progressively faster than
the ‘Golden Rule prediction. The vibrational frequency in
this case is @ = 180 cm™"', For calibration purposes, we
note that the electronic coupling describing the primary
charge separation in photosynthesis is estimated to be in
the range 20—30 cm™! [2].

The Golden Rule breaks down when the effective elec-
tronic coupling strength gives rise to transfer on a time scale
that is competitive with the population relaxation and de-
phasing processes that lead to equilibration in the reactant
well, A particularly useful way of understanding the break-
down of the Golden Rule approximation may be obtained
by looking at the ensemble averaged value of the coordinate
operator as a function of time calculated from

<> = Trle(Q].

The initial excitation pulse is such that a number of vibra-
tional levels are coherently prepared. This leads to an av-
erage value for Q that is initially displaced from the mini-
mum of state |1, The subsequent ensemble averaged tra:
jectory shows in a detailed Way the competition between the

-electronic coupling which tends to take (@) to values cor-

responding to state |2) and dephasing which leads to values
of {Q) corresponding to the equilibrium configuration of
the reactant state. Fig. 4 shows such a plot for J = 0, The
oscillatory motion is due to the vibrational coherence which
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Fig. 4
Ensemble-averaged value for the reaction coordinate, {Q(¢)), as a

function of time for the parameters of Fig. 3./ = 4.0 cm™!
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-damps -out due to the system-bath interaction. In this case

B

the dephasing time.is approximately 600 fs.

Fig..5 shows a similar plot for J = 4 cm™! The motion
of population-into the final state is revealed by the pro-
gressive increase in the value of {@). All coherence has
vanished before any significant increase in {Q) from the
value — @, has occurred. In this case the Golden Rule and
Redfield rates are identical. By contrast, Fig. 6 shows results
for J = 12 cm™!, just at the point where the Golden Rule
expression breaks down. Here, the vibrational coherence
persists as population is depleted from the initial electronic
state. The stutter seen in the oscillation at about 1.6 ps
results from the interference between the electronic coher-
ence, oscillating at a frequency of 2J, and the vibrational
coherence, oscillating at the vibrational frequency.
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Fig. §
Ensemble-averaged value for the reaction coordinate, {Q (1)), as a
function of time for the parameters of Fig, 3. J = 40 cm™!
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Fig. 6
Ensemble-averaged value for the reaction woordinate, (@), as 4
function of time for the parameters of Fig. 3. J = 12.0 cm™!

The interaction between electronic and vibrational co-
herence is even more evident in Fig. 7 where the ensemble
averaged energy {H(t)), is plotted against the ensemble av-
eraged coordinate (Q(t)), for a somewhat different set of
parameters (see figure caption). The corresponding popu-
lation decay is shown in Fig. 8. Aside from a brief induction
period during the first 100 fs, the decay is quite exponential
and experimentally there would be little to indicate that
phase coherence was playing a significant role. However, in
this case the decay time of 1.7 ps is approximately three
times faster than the Golden Rule prediction.
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Enscmble-averaged energy, (H(t)), vs. ensemble-averaged coordi-
nate, {Q(t)), Parameters arc: 0, = w; = 400 cm~"',-4 = 400 cm ™,
¢ & ~150cm~', g, = 150 em™", 7' = 298 K, J = 100 cm™!,
y*=4.0cm™~'y"* = 4.0 cm™". The minima of the two states are at
Q = 4:0.53 in this calculation
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Population of initial state as ¢ function of time for the parameters

of Fig. 7
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In general, it is difficult.to predict the range of validity of
the Golden Rule-formula or even the nature of deviations
from the Golden Rule in multi-level systems. The increased
complexity brought about by having many coupled levels

with different dephasing times and effective J-values can lead:

to a wide range of behaviours depending on parameter val-
ues and even on-the nature of the initial state. In the case
just discussed, significant enhancement of the rate (above
that predicted from the Golden-Rule) was observed due to
the presence of coherence. We surmise that because the lev-
els in state [1) are essentially resonant with those of state
|2, the relatively slow dephasing time allows the levels to
remain resonant for a substantial period of time before fluc-
tuations destroy. the overlap. It is important to stress that
the results shown above arise from the presence of many
coupled levels and do not occur in an isolated three level
system. Such a system is shown in.Fig. 9 along with the
1/e decay time as a function of J% For small values of J/I'
the rate follows the Golden Rule prediction. At larger values,
the rate starts to fall' below the Golden Rule prediction. Of
course, at sufficiently high values of J/I" the concept of a
rate is meaningless, and the population dynamics will have
an oscillatory component.

' 1 1 v 1 ' H '
0 100 200 300 400
JZ
Fig. 9
1/e decay time vs. the square of the clectronic coupling calculated
from the Redficld equations. The Golden Rule prediction is shown
for comparison. Parameters are @; = @, = 800 cm =1, 4 = 800
em™ g, = —400cm™ g, = 400 ecm™, 92 00,72 = 9.0 cm™!

The method described above presents a realistic approach
to understanding chemical rate processes when the dynam-
ics are complicated by.the presence of vibrational relaxation
and dephasing on the time scale of the electronic transition,

Summary

We have discussed barrierless processes from two per-
spectives, A purely classical diffusive model was used to dis-
cuss some aspects of barrierless reactions involving large
amplitude motion. Secondly, our initial studies of quantum
effects in vibronic systems, where the vibrational structure
and dynamics are included explicitly, was described. We
plan to extend this latter work in studies of criteria for adi-
abaticity, and of energy transfer in moderately strongly cou-
pled systems, for example, to investigate the influence of
correlation in fluctuations at the two sites,

This work, was supported by grants from the NSF. We thank
David Todd for his help with the manuscript.
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Solvent Polarity Dependent Formation Dynamics of TICT States.
1. Differential Solvatokinetics

Wolfgang Rettig

Iwan N.-Stranski-Institut, Technische Universitit Berlin,
StrabBe des 17. Juni 112, W-1000 Berlin 12, Federal Republic of Germany

Chemical:Kirietics | Fluorescence | Photochemistry/ Polarity | Viscosity
Compa;ispmof theé fluorescence kinetics of two dialkylaminobenzonitriles with different hindrance to

planarity is used to extract information on the polar-

solvent induced shape changes of the excited-state:

potential surfaée for TICT formation. The conical intersection between B* and A* states is shown to
move to smaller twist angles as solvent polarity increases.

Introduction

Just as the well-known technigque of solvatochromic meas-
urements is able to yield information on the dipole moment
of excited states fromthe red- or blueshift of absorption
and/or fluorescence spectra in solvents of different polarity
[1—3], the measurement of the solvent polarity-dependence
of reaction rates, called solvatokinetics here, can provide
information on the electronic nature of the transition state
and the dependence of barrier heights and barrier positions
on solvent polarity. This field is relatively new, and only
scarce data can be found in the literature. Regarding ground
state reactions, examples for both retarding [4] and accel-
erating [5] influence of increasing solvent polarity have been
observed. In excited-state reactions, too, cases of reaction

rates increasing [6—8] and decreasing [9] with solvent po-

larity have recently been found.

The four examples cited refer to stilbene and related dyes
which undergo trans-cis or cis-trans isomerization in the
excited and/or ground state. In this case, the qualitatively
different solvatokinetic dependences can directly be linked
to the theoretical model of Biradicaloid Charge Transfer
(BCT) states [10—13], and they result from the crossover
of a polar and a nonpolar state for the conformation with
a 90° twisted stilbenoid double bond, when donor and ac-
ceptor substituents are introduced [9].

The well-known Twisted Intramolecular Charge Transfer
(TICT) state [12—15] can be viewed as a subclass of BCT
states [10—13] where an essential single bond is twisted,
and where the electronic structure is that of a radical cation/
radical anion pair. Recent solvatokinetic measurements of
the ps formation rate kg, of the TICT state A¥* from its
precursor state B* for dimethylaminobenzonitrile
(DMABN) in isoviscous mixtures of alkylnitriles and al-
kanes, and in homologous series of alkylnitriles [8,16] es-
tablished that the observed kinetics is accelerated when sol-
vent polarity increases and everything else is kept constant.
This lead to the notion of solvent-polarity dependent acti-
vation energies, similarly as observed in the stilbene exam-
ples [6—8]. In the case of DMABN, increasing solvent po-
larity lowers the activation energy for TICT formation
[8.16] although the term “activation encrgy” should be han-
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dled with caution in view of the recent interpretations of
TICT formation as a barrierless process [12,17,18].

This letter is intended to bring additional light into these
questions and reports solvatokinetic measurements on two
derivatives of DMABN which differ in initial conditions
(twist angle). A large body of evidence is available indicating
that substituted N-phenyl-piperidines are substantially
twisted in the ground state (Adgs = Adpc 2 30°, see scheme
1) whereas N-phenyl-pyrrolidines are close to planar (see
references cited in [19]). The corresponding 4-cyano-com-
pounds, N-(4-cyanophenyl)-piperidine (PIPBN) and -pyr-
rolidine (PYRBN) also show this feature as evidenced by an
analysis of their photoelectron spectra [20]. The TICT for-
mation rates kga of these two compounds (see scheme 1)
differ by a factor of more than 10 in n-butyl chloride, and
the faster reaction of PIPBN was interpreted as being the
result of pretwisting in the ground state [20]. Comparison |
of the solvatokinetics of these two dyes (“differential solva-
tokinetics”) should thus allow to yield information on where
along the uxcited state reaction potential the activation bar-
rier is placed and how it moves upon changing the solvent
polarity.
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. Experimental

The synthesis and" purification of PYRBN and PIPBN
‘have been described previously [19]. Solvents used were
spectrograde or purified by repeated fractional chromatog-
raphy and, where necessary, subsequent distillation. Fluo-
rescence decay kinetics at low temperatures were measured
using a time-correlated single photon counting setup and
cooling equipment described in detail elsewhere [21,22].
Synchrotron radiation from BESSY was used as excitation
-source (A = 300 & 10 nm). The short wavelength fluores-
cence Fp was monitored at 350 4 10°nm.and its decay
analysed by the iterative reconvolution technique [23] with
a kinetic model according to Eq. 1 (sum of exponentials).

I(@t) = z,: Ajexp(—t/u). M

In ali cases, three exponentials or less were sufficient for an
acceptable fit (x> < 1.2). The nonexponential nature of the
decays did not change when observed through a polarizer
set at the magic angle (54.7°). Temperatures were xept far
below T; the equilibration temperature around which the
excited states equilibrium B* = A* can be established within
the excited states lifetime [14, 19, 24],-thus all kinetics belong
to the “irreversible kinetic region” represented by simple
B*— A* reaction. This is also evidenced by the fact that the
long-time decay constants of the short (Fp) and the long-
wavelength band (F,) are significantly different [25,26].
Although a multiexponential model yields acceptable fits,
other kinetic models, of a nonexponential nature, have
equally ben discussed [12,17,25,27,28], especiaily to de-

scribe the kinetics observed in alcohols. In these solvents,’

plots of log I'(t) vs ¢ are curved for Fp. A multiexponential
model (according to Eq. (1)) can faithfully describe this cur-
vature even though the (nonexponential) kinetics may have
nothing to do with several independent species constituting
the Fy-fluorescence. Therefore, the recovered time constants

. 7 cannot directly be compared, and due care has to be taken

Table 1

to include the weights.4; associated with 7, (Eq. 1) into the

analysis.

One of the simplest ways to do this is to use the mean
decay time 7 defined by Eq. 2 which is a measure for the
time-integrated fluorescence (i.e. proportional to the fluo-
rescence quantum yield [217).

= Z A r,/Z'_ A,. @)

Results

Fig. 1 shows examples of the Fy decays observed in different
solvents. In all cases the decay of PYRBN (when measured by 7) is
slower than the decay of PIPBN fluorescence. The results of the
fits are presented in Table 1.

This table also contains the decay time t,; measured at 77 K
where the twisting motion is thought to be frozen. Then, TICT
formation rates kg, can be readily obtained by using Eq. 3. They
are summarized in Table 2, together with the ratio of the rate
constants for PIPBN and PYRBN as a function of solvent polarity
(measured by Af = (e—1)/Qe+1) — (B*—=1)/@n* +1) [1]).

koa = (' = 33’ ®)

It is cvident from Fig. 1 and Table 1 that nonexponential behaviour
is mainly observed in the more polar solvents butyronitrile and
propanol (larger values of 4;). But also in medium polar solvents
like n-butyl chloride, a long decay component can be observed,
although of very small weight (4; < 1%) and negligibly affecting
the value of 7. The nature of this long decay component is not yet
completely clear but it could be indicative of a residual nonexpo-
nentiality. It is not linked to the B* = A* equilibration process and
is observed-for all the TICT forming compounds investigated so
far [25]. It does not diminish \ipon repeated purification. The pres-
ent results and conclusions, however, are not affected by it in any
way.

Discussion

The above results can be understood using the simple
model of a double-well S, -potential with a barrier (or region
with an approximately flat potential) separating B* and A*
states, as schematically shown in Fig. 2. Due to the steric
repulsions in PIPBN operative for near-planar conforma-

Decay components 7,(ns), relative weighty A, (%) and derived mean relaxation times for the decay of Fp fluorescence of PYRBN and PIPBN i different

solvents at low temperature

Solvent Temp. Compound 7y(Ay) 12(42) 13(d3) i
EOE? —-105°C PYRBN 2.19(1.0) - - 2.19
PIPBN 0.32 (0.996) 345 (0.004)® ~ 0329
EOE/IY -120°C PYRBN 202 (0.92) 4.8 (0.08) - 2.24
PIPBN 0.34 (0.99) 2,61 (001) - 0.36
BCI® —-120°C PYRBN 296 - - 296
PIPBN 0.315(0.99) 3.9 (0.01) - 0.35
BCN/I¥ -120 C PYRBN 1.00 (0.51) 232 (049) - 1.65
PIPBN 0.19 (0.85) 0.67 (0.14) 3.1 (0.01)° 0.26¢
n-propanol ~105°C PYRBN 0.91 (0.43) 3.6 (0.57) - 246
PIPBN 0.18 (047) 1.27 (0.35) 2.86 (0.18) 1.05
BCI? 7K PYRBN® 5.5(1.0) - - 55
PIPBN® 34

4 diethylether, ¥ diethylether, 1sopentane (9. 1), ' n-butyl chlonde, * n-butyronitnile, subutyrominke (9.1), “ sulvent independent, " slightly nonexponenual with
curvature depending somewhat on solvent, ¥ equilibration. longest ime constant equal to decay time of F,.
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Table 2

TICT formation rate constants kg, for PIPBN and PYRBN, and their ratio r, For solvent abbreviations, see Table 1. Low-temperature

viscosity values i are also given

Solvent Temperature: n(cP) (PIPBS)’;I 07 5! (PYPBI;IB)?I 07 5! r
EOE -105°C 24 283 27 10.5
EOE/1 —-120°C 248 . 26 9.5 .
BCl -120°C 280 15 19
BCN/1 —-120°C 355 43 83

. n-propanol -105°C 900 66 20 33

tions, which are larger than for PYRBN, an additional steric
potential is introduced (for both S, and §;), but the rest of
the potential, for larger twist angles, is thought to be roughly
unaffected. Consequently, PIPBN starts its reactive motion
on the S, surface much closer to the “critical twist angle”
¢ wheie the.downward slope of the TICT potential starts
than PYRBN,

The potential depicted in Fig. 2 with the unbroken line is
multidimensional in nature, i.e. it involves not only the twist

v T r—
t/ns @ 8 10

1glecnts) i 1

4

t/ns © S 10

Fig. |

Decay curves of the Fg fluorescence in diethylether at —105°C (a)
PIPBN, b) PYRBN) and in n-butyronitrilefisobutyronitrile (9:1) at
~120°C (c) PIPBN d) PYRBN). The figure also contains the fitted
curves (unbroken line) and the experimental prompt response func-
tion. The longest decay components for a) and c) (with very small
weight) are attributed to excited state equilibration

angle ¢ as reaction coordinate but also an additional re-
active mode of symmetry species B (in the point group C,)
of yet unknown nature [38]. The presence of an additional
mode follows from considerations of fluorescence polariza-
tion measurements [29] and state correlations [30]. At the
intersection at ¢, of the zero-order B* and A* states (in-
dicated by the broken lines), a conical intersection develops
[30,31], and the system does not have to go over the top
of that barrier but can follow the unbroken potential with
reduced (or altogether absent) activation barrier.

Fig. 2

Schematic S;-potentials for PYRBN and PIPBN. PYRBN is as-
sumed to possess a potential minimum at a twist angle ¢ =0
whereas steric repulsion (—~-—-) leads to a twist angle of ¢ ~ 30°
for PIPBN. The zero order potential curves for B* and A* states
(= =) cross at the critical twist angle ¢, where a conical inter-

section develops providing a potential ( ) with strongly low-
ered or absent activation energy from B* to A*

As the TICT (A¥*) state is considerably more polar than
the B* state [14,15], an increase of solvent polarity will
preferentially lower the A* with respect to the B* state thus
shifting ¢, to lower twist angles (and lowering any activa-
tion barrier which might be present) as indicated in Fig. 3a).
If the solvent polarity is high such that the initial twist angle
of PIPBN (~30°) exceeds ¢, then the reactive motion starts
off with a nonzero gradient and corresponds to driven dif-
fusion which is faster than diffusion over a barrier or along
a flat potential (applicable to PYRBN for twist angles be-
tween 0° and @),

The diffusion along the flat portion of the potential
(0" < ¢ < @) can be modelled by the “staircase model”,
leading to a stochastic differential equation the solution of
which has recently been presented [32,33]. In this model
{Fig. 3b), the reactive system can emit (Fy) fluorescence as
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long as it diﬁ'uses along the flat portion of the potential. The
diffusion'starts at x =x; at x = 0; it is reflected;and atx = a
. -(corresponding to ¢ in our case) the system reacts and thus
instanfaneously stops to emit.

a)
X

E o a
N\
Xy \
0 X —e
Fig. 3

a) Schematic S, potential for PYRBN (see Fig. 2) under the influence
of varying solvent polarity. For weakly polar solvents (——), ¢,
is situated at laresr twist angles than for strongly polar ones
(=+—1—, ¢), b) Staircase model (——) for calculating the sur-
vival probability on the flat part of a potential (— — —) similar to
that Of a). For the significance of @ and xo, see text

The time-dependent fluorescence intensity /() is propor-
tional to the survival probability P () on the surface the
average decay rate of which is given, under simplifying:as-
sumptions, by Eq. (4) [33],

2kT !

= )

@

where k7 has the usual meaning, & is the solvent friction, a
the location of the sink or step, and x, the initial condition
(starting twist angle in our case).

Eq. (4) predicts that, as a (or ¢.,) decreases the survival
time gets shorter, and thus the reaction rate increases (for
all other conditions being equal). The isoviscous experiments
by Hicks et al. [8,16] showing a positive solvatokinetic be-
haviour i.e. increased reaction rate with increased sclvent
polarity can thus be interpreted in two ways: i) variation of
the barrier height [8,16] or ii) variation of-the barrier po-
sition, or of ¢, defining the edge of a flat portion of the
surface. On the basis of recent discussions of kinetics on
barrierless and low-barrier potentials and from the com-
parison of measured activation energies with those of the
solvent viscous flow [12,17,18] the second possibility seems
to be more likely although reality may also well correspond
to a mixture of both cases.

The Kinetic.data presented here are not isoviscous. Due
to the lack of low-temperature viscosity data of most of the
solvents used only few values-foi 5 [34] could be included
into Table 2.

These values make evident, that at temperatures around-
~105°C, propanol possesses a considerably higher viscosity
than the nonhydroxylic solvents used. ‘For these low vis:
cosity solvents, an overall acceleration in rate is observed
especially for the strongly polar butyronitrile,

Comparison of the two dyes PYRBN and PIPBN, how-
ever, in a way eliminates the conditions of different viscosity,
and the rate ratio r yields evidence for the change of the
position of ¢

By application of Eq. (4) to the present problem, Eq. (5)

is derived, where the initial conditions x, have been set 0°

and 30° for PYRBN and PIPBN, respectively, and where a
has been identified with ¢,

_ kn(PIPBN) #2
"= Tea(PYRBN)  ($er—30) (fr + 30)

)

From Eq. (5), r is expected to increase and to approach
infinity as ¢, tends-towards 30° In reality, a maximum but
finite value for r may.be expected. Eq, (5) is not applicable
to cases with ¢, < 30° (more polar solvents), and an ap-
propriatc stochastic model would have to include both a
flat and a curvéd potential region. It can, however, easily be
seen that, as ¢ decreases below 307 the relaxation of
PIPBN starts off with driven diffusion whereas for PYRBN
a flat potential region remains which has to be crossed. We
therefore expect r to decrease for ¢, decreasing below 30°
and to reach its lowest value for ¢, approaching 0° (which
is, of course, a somewhat unphysical case). Thus, the ob-
served r-dependence on solvent polarity (Table 2) with its
maximum reached for n-butyl chloride can be interpreted
to signify ¢, =~ 30°in this solvent, with ¢, > 30° in diethyl-
ether, and ¢, < 30° in n-butyronitrile and propanol.

The very low value of r in propanol is probably related
to an additional source, namely the competition between
the reactive motion along ¢ (kga) and that of the more or
less concerted solvent relaxation, k. In alcohols, kg is
espezially slow such that kg, and &, have the same time
scale, and a two-dimensional diffusion model should be used
in this case. This problem is dealt with in a separate paper
[35] and can account both for the nonexponentialities ob-
served (Table 1) and the observation of A*-rise times being
shorter than B*-decay time [12,17,36]. Additionally, H-
bond formation may play a role in alcohcls [8,37].

Finally, it should be mentioned that nonexponentialities
are inherent in the staircase model [32,33], and that the
theoretical long-time decay constant given by Eq. (6) [33]
does not depend any more on the initial condition xy, (dif-
ferent to the average decay rate constant, Eq. (4))

1 n%T

klong = T azé

©)

but only on g, on temperature and on solvent friction . The
long decay components observed in Table 1, with their
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weight increasing with solvent polarity, could well be due

to-this latter source.
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Recently we applied, for the first time, the general theory of dilation analyticity (or: Complex Scaling
Method, CSM) to quantum statistics of nonequilibrium. A novel kind of (universal) coherence was revealed
from first quantum theoretical principles. The corresponding irreducible structures we called coherent-
dissipative structures, since they represent a short-lived and spatially restricted cooperative phenomenon.
The crucial points of the theory are stressed. Similarities as well as differences with (i) the BCS-states of
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superconductivity, (i) the dissipative structures of the Brussels school, and (iii) Yang’s concept of ODLRO
are mentioned. Very recently the general theory was applied to different dynamical processes in amorphous
condensed matter, and specific and quantitative predictions were made. In connection with current work,
we discuss here in some detail two new predicted effects concerning protonic delocalization in-water (and
-other materials) and proper experiments to test them. These effects are: (1) a novel relation between proton-
transfer rates and proton mobility in water; (2) an anomalous decrease of proton mobility in H,O/D,0
mixtures. Both effects are shown to contradict the predictions of all thus far existing theories or models.
Current experimental results verify undoubtedly our theoretical predictions.

1. Introduction

Recently we studied the possibilities for an extension of
the theory of dilation analytic operators of quantum me-
chanics [1,2] (also called Complex Scaling Method, .CSM)
into the Liouville (or: superoperator) level {4, 3]. The:start-
ing point of this work was the conjecture that an intrinsic
physical connection between the CSM and the conceptual
basis of Prigogine’s novel theory of microscopic irreversi-
bility [5—11] may exist. Our corresponding theoretical in-
vestigations, which are based on

(i) the CSM of ordinary quantum mechanics and

(ii) Coleman’s density matrix theory for fermionic systems
[12,13],

led us to the first “extension” of the CSM into the canonical
ensemble formalism of quantum statistics [4].

An unexpected theoretical result is that the fermionic sec-
ond-order density matrix I'?, after proper CSM-transfor-
mation and “thermalization”, may contain submatrices y
that have no diagonal representation.

The physical meaning of this surprising finding is that the
quantities y, which are associated with quantum correla-
tions, represent a new kind of “undivisible units” (or: struc-
tures), due to the fact that the well-known probabilistic in-
terpretation for the diagonal elements y; (i = 1, ... sy of ¥
is now impossible.

These units we called coherent-dissipative structures, be-
cause they are short-lived, short-ranged, and exhibit a finite
minimal dimension s, in the space of state functions (i.e.,
the corresponding Hilbert space after the application of
CSM); additionally, and most surprisingly, increasing tem-
perature seems to support their extension. These structures
represent a new cooperative (or synergetic) phenomenon
that may be of significance for dynamical processes in con-
densed matter. As their existence follows “from first prin-
ciples” of quantum theory, we also studied [4] their con-
necticn with (and difference to) (i) the “standard” coherent
states of quantum theory (like the BCS states of supercon-
ductivity [14]), (ii) Prigogine’s dissipative structures of phe-
nomenological irreversible thermodynamics [15,16], and
(iii) Yang’s concept of off-diagonal long-range order (OLD-
RO) [17].

Very recently we succeeded with the application of the
above general CSM-theory of quantum correlations to dif-
ferent and concrete dynamical processes in condensed amor-
phous matter [18 — 25]. The predictive power of our theory
was recently demonstrated by 1ts different experimental ap-
plications [18,19, 22—-26], and its quantitative predictions
[20] concerning certain new experiments [22,26], which
have been motivated by the theory, cf. Sections 3 and 4.

-

Thus far the existing theoretical and experimental results
strongly indicate that quantum correlations (as revealed by
our general CSM-theory) play a fundamental role in the
dynamics of condensed matter and — this being a crucial
point — they can explicitly be associated with concrete ex-
perimental results.

In Section 2 a short outline of the general theory is given.
Section 3 contains the application of the theory to the phys-
ical context of proton transfer reactions and proton mobility
in water, a predicted novel relation between these quantities
[20] and certain very recent experimental results [26]. Sec-
tion 4 presents the predicted “anomalous” decrease of pro-
tonic conductance in H,0/D,0 mixtures [20] and the ex-
perimental confirmation of this effect 22].

2, A Short Outline of the CSM-Theory of Coherent-
Dissipative Structures

Trying to make the paper as self-contained as possible, a
short outline of our general CSM-theory of thermally acti-
vated (or: supported) quantum correlations in condensed
matter is given in this section. For the full proofs, see
Ref. [4].

(A) We start with the presentation of the crucial formal-
mathematical ingredients of the theory and its main result.

There is an algebraic corollary due to Reid and Briindas
(for the proof, see [27]) which states the following:

The s x s Jordan block C,(0) represented by the matrix

0160 ..0
G0 = .00 1)
SN
0 ' 0
is similar to the s x s matrix g with matrix elements
1 . k=2
qu = (614 - ;) " exp (m 5 ) )
where
1<kl<s. (€))

From this corrolury it follows that there does not exist any
similarity transformation (unitary or not) which can diag-
onalize ¢.

{B) The proper theoreti.al entity for the description of the
quantum entanglement between physical states in the level
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of “two-particle-" (better: two-states-) correlations is the sec-
ond order reduced density operator (or: matrix) I'®. For
fermionic systems, many fundamental results concerning-I'®
have been achieved, a considerable part of them being
proved by-Coleman [12,13].

Coleman considered the I'® defined with respect to the
AGP function |g?¥/?), where N/2 is the number of “paired
fermions”. This function is constructed with the aid of the
geminal

lg1.2) = L adkk+s> @

of rank s, with s > N/2, where |k) and k+s) are “one-
particle” functions, and the AGP (“antisymmetrized geminal
power”), which is defined by
19"2) = Ax {g01,29(3,4) ... gN=1, M} , 5)
Ay being the conventional antisymmetrization operator, In
the specially important case where the eigenvalues of the
corresponding first order reduced matrix I'" (g) are all
equal, the AGP function is called extreme. In this case, all
the wave amplitutes g; in.(4) are equal,

It was proved by Coleman that I'®(g"/) cxhibits a simple
“box and tail” matrix form, if it is represented in the basis

{lii+sh1<iss)y, {lijni#i+s 15ijs2s).  (6)

In the following we consider extreme AGP’s exclusively. In
this case |g) is an eigenfunction of the matrix I'®(g"¥?)
corresponding to the large eigenvalue AP of the matrix
' (G¥®), The remaining eigenvalues are equal and consitute
a (2s+1) (s~ 1) degenerate eigenvalue I'®, which is very
small, if 2s/N > 1. The matrix I'®(g"") can therefore be
decomposed as follows:

re = roge?)
= I+ M U]
= (P + ) + rfa,

where the “large box part” is given by

l9>28¢gl, ®

rg =
with
1
=—2 |k k+s),
19> = 7% ek +9)

the “small box part” is defined by
re =295 okt (3= L), o

and the completely uncorrelated “tail part” is given by

rg.=22 ¥ |kD<kl.
k<l

kts#l

(10)

The “coherent” part I'?, which is representable by a wave
function, is intrinsically connected with the BCS-function of
superconductivity; see below. Our theoretical work showed
however that — for the description of thermally activated
quantum correlations — the relevant part of the density
operator I'® is the small box part I'®, Eq. (9), where the
constant ¥ depends on the (finite) number of particles N
and the accompanying (finite number of) fermionic degrees
of freedom s,

NN=-2) 2)

= 4s(s

(11)

where 5 > N, (Full details are given in [12,13] and also in
[4)).

(C) In order to apply the above density matrix formalism
.0 a physical microdynamical process exhibiting irreversi-
bility, the focus is on the resonance picture of unstable states
[4]. Here enters the CSM into the formalism. The “part of
the ensemble”-correlations represented by the quantum cor-
related density operator (9) is then subjected to the “ther-
malization transformation”

1 -2y Ly
T rfe 2,

y=—e

(12)

with the standard abbreviation § = 1/kp7. This transfor-
mation makes the connection with the canonical enscmble
formalism of statistical mechanics. The notation (...)° iefers
to complex scaled quantities. Here, e.g, H® represents the
appropriate complex scaled second order reduced Hamil-
tonian, and Z is the appropriate normalization factor,

Further straightforward derivations within our general
CSM-theory showed that, in the important special case
where all the paired states |(k, & + s)°) have the same (real)
energy, i.c.

E,=E (k=12 ..9), (13)

the considered density operator, Eq. (12), takes the form

7= L wrlle k5D + (14)
with

1 1\ £ %
= et 2 (5 = 1) a5, (15)

Here, the familiar Boltzmann factor, exp (— BE), appears ex-
plicitly. Parenthetically, the general CSM formalism asso-
ciates with the “widths” g, the “lifetimes” 7, in the standard
way, i.c.

& = .

7 (16)

The following crucial point should now be observed. The
matrix elements y;, Eq. (15), of the operator 9 become pro-
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portional to the-matrix-elements of the matrix ¢, Eq. (2), if
the restrictive quantization conditions

k-1

,nn;- = msk, (k bl 1, 2, e S)‘, (17)
aré fulfilled. In this specific case the equality
u = %e‘”‘?l&”qu = const * gy Bt

holds true.

In more physical terms, if the “widths” ¢ and the energies
E;, of the complex scaled pairs |(k,k +s)°> fulfill the condi-
tions (13) and (17), then the matrix elements, Eq. (15), of the
density operator y constitute a Jordan block similar to C,(0),
Eq. (1). This.is a very important result, because it means
that in this case the operator y has no diagonal represen-
-tation, Furthermore this implies that all the “paired” states
constituting y coalesce and act “cooperatively” as an undi-
visible, unit, Thus the well-known probabilistic interpreta-
tion of the diagonal elements yy, is completely lost here.

It should be pointed out that this surprising finding is
intrinsically connected with the application of the CSM'into
the formalism, since the proved Jordan block structure of y
is necessarily connected with the complex factors

e'é“‘ +8)

appeatring in (15). The density operator y, Eq. (14), gives the
mathematical. representation of the coherent-dissipative
structures, i.e., the synergetic phenomenon of interest.

4D) From the quantization conditions (17) and further
physical reasoning, we finally derived the result that the
minimal “dimension” sy, of y is given by

Smin = 41[TkBT' Trel - (19)
T, represents the relaxation time (or lifetime) characterizing
the specific microdynamical process of a microsystem. Thus
Smia determines the minimal “size” (in the space of CSM-
transformed state functions) that the Jordan block at least
must have, and at the'same time it défines the new “unit”,
i.e. a coherent-dissapative structure. As sy, is direct pro-
portional to T, one may conclude that the thermal motion
supports the extension of these structures.

In this context it is also interesting to observed that the
trace of y representing coherent-dissipative structures van-
ishes identically, as e.g. one immediately sces from Eq. (1).
Our current investigations indicate that this result may be
of considerable importance in the physical context of laser
light scattering on water, because it can be connected —
under specific conditions — with an additional light scat-
tering component from “strongly” H-bonded regimes; cf.
[20,21].

(E) The above structures we have called coherent-dissi-
pative due to (i) the new kind of coherence associated with
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the appearance of Jordan-blocks in the CSM-transformed
density matrix v, and-(ii) the finite lifetime 7. of these struc-
tures.

The physical context of the above formalism as well as
the physical meaning of different restrictive conditions ap-
pearing therein have been discussed in detail [4,21]. Here
let us-mention three important points which are related to
the fundamentals of our general CSM-theory of quantum
correlations in condensed.matter.

(i) It has been proved by Blatt [28] and repeatedly pointed
out by Coleman [12,13]'that the BCS ground state ansatz
is “equivalent” to an AGP ansatz, Eq. (5). More specifically,
the superconducting state is here represented by the large
box part I'{?, Eq. (8), which is representable by a wave func-
tion. Also it should be pointed out that the coherent-dissi-
pative structures always have finite lifetime and extension
(in Hilbert space). In contrast to this, a superconducting
state hasan infinite lifetime and may contain all particles of
the system (at T = 0K).

(ii) The following similarity exists between the coherent-
dissipative structures and the well known dissipative struc-
tures [15,16] of Prigogine and coworkers: Both cannot have
a “size” smaller than a critical one; and both cannot exist,
if they are not in contact with the environment. On the other
hand, it should be stressed that the dissipative structures are
concepts: of phenomenological thermodynamics, whereas
the cohetent-dissipative structures are concepts of micro-
scopic theory. These remarks support the following specu-
lation: The formalism of coherent-dissipative structures may
represent the framework in which the phenomenological dis-
sipative structures could be established “from first princi-
ples”,

(i) It has been pointed out [4] that the aforementioned
extreme condition on the AGP is a necessary condition for
the appearance of Yang's concept of off-diagonal long-range
order (ODLRO) [17]. As shown above, the appearance of
coherent-dissipative structures is intrinsically connected
with the existence of off-diagonal terms in the thermalized
and complex dilated I, Therefore, and in order to prevent
possible confusion and misunderstanding, it should be
stressed that coherent-dissipative structures are intimately
(although not in the “BCS sense”) connected with Yang's
ODLRO, the connection being even strengthend by the fact
that the corresponding density operator y has no diagonal
representation. In this context, one should also observe that
no intuitively appealing explanation (i.e., an explanation in
classical mechanical terms) of the emergence of coherent-
dissipative structures is possible. Namely, as Yang points
out: “Since off-diagonal elements [of the density matrix]
have no classical analog, the off-diagonal long-range order
... is a quantum phenomenon not describable in classical
mechanical terms” [17].

(F) The different applications [18 —25] of the above gen-
eral CSM-theory make use of the following ansatz [21] con-
cerning the actual delocalization (in coordinate space) of
coherent-dissipative structures:

Ex = KA ...)s WL - Squnx -

(20)
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The symbols have the following meanings: £ may represent
— depending on-the specific application — (i) a transport
coefficient, or (ii) the geometrical size of a coherent-dissi-
pative structure; X the specific microscopic quantum system;
Smin,x the “size” (in the space of state functions) of the struc-
ture as given by the main formula (19); W the conventional
thermal de Broglie wavelength of one quantum system X;
and, finally, Fx(H.s, ...) a functiofial of the “effective” or
“relevant” Hamiltonian Hy being proper to the dynamics
of X in the condensed system, F may depend on some ex-
ternal parameters, too.

One should observe that the specific “mechanism”, H,
being responsible for the -microdynamics of the system ap-
pears explicitly in this ansatz. However, its actual form is
often not needed, as the different successful applications
[18~25] demonstrate.

3. Coherent-Dissipative Structures.and Proton Transfer in
Water

One of the oldest and most fundamental problems in the
physical chemistry of water is the evaluation of the rate
constaiits characterizing the following processes [29]:

ki E,
H;0* + H,0 === H,0 + H,0* (1a)

OH- + H,0 <225 H,0 + OH-. (21b)
These processes play an important role in many biological
processes, too, With the pioneering work of Meiboom [30]
it has been proved that one can measure these reaction rates,
k;, and activation energies, E, (with i = 1,2) by NMR spec-
troscopic methods; see below. The study of proton transfer
reactions in water is also of importance to the understanding
of the excess (or: anomalous) conductivities (or: mobilities)
of the hydronium (H;O*) and hydroxyl ions in water and
aqueous solutions. Furthermore, in aqueous solutions of ac-
ids and bases, fast proton transfer in the water is often con-
sidered to be involved as part of the actual reaction scheme;
see the-classic work of Eigen [31].

Recently Hertz [32] presented a detailed analysis of a
series of different experimental methods (NMR, X-ray and
neutron scattering, etc.) used to detect the H* (or the H;0%)
fon in aqueous solutions directly. This analysis, together
with an extensive discussion of some corresponding exper-
imental results, revealed that, thus far, none of the consid-
ered experimental investigations was able to detect directly
the so-called H* particle (or the H;O*) in aqueous solutions
[32].

In all the traditional (and well-established) theories of the
ionic solutions, however, the entity H* is postulated to exist
— at least for sufficient short times — and to correspond
to some fast “moving” (or “jumping”, or “tunnelling”) par-
ticle (a proton). In this context let us just mention the well-
known Grotthus mechanism, a traditional model that is be-
lieved to explain classically the high excess conductivity of
H* (and OH™) in aqueous solutions; see Ref. [33] for a
detailed discussion. Nevertheless, the aforementioned ex-

haustive analysis [32] led to the surprising conclusion that
the physical object usually defined to be the H* (or H;0*)
cannot be considered — thus far — to represent a particle
in the conventional sense. This finding led Hertz to the con-
clusion: “... what we call H* ion in aqueous solutions is
really a dynamical property of the solution™ [32]. At this
stage, it is important to point out that the analysis of ref-
erence [32] is carried out entirely within classical mechanics.
In this framework, of course, there are no delocalization
effects like those being typical for quantum mechanical proc-
esses, and therefore the aforementioned conclusion is clearly
remarkable.

Motivated by the above remarks, it appeared worthwhile
to investigate some of the main aspects of the microdyn-
amical behaviour of the system “H* /water”, in the light of
our general CSM-theory of quantum correlations [18]. An
important point of these investigations may be illustrated
by the {ollowing, From the quantum mechanical viewpoint
it appears that the H-constituents forming the H* ions are
indistinguishable from those belonging to the water mole-
cules and being in the-vicinity of the ions. This “unconven-
tional” consideration may be motivated by the fact that the
thermal de Broglie wavelength of a “quasi-free” proton,
Wk, is about 1 A at room temperature (cf. [21,29]). This
is large enough to find (in most cases) water protons in a
distance of the order of Wit around each H*. This fact
may - even in the present case — lead to the typical de-
localization and/or interference effects being characteristic
for the quantum theory. The assumption of quantum effects
between protons “belonging” to ions and water molecules,
of course, represents a hypothesis. Nevertheless it appears
that two important predictions, which follow straightfor-
wardly from this assumption, are in. contradiction to all
known conventional theories (or models); see the present
and the next section. Fortunately, these predictions are ca-
pable of experimental testing, so that the question concern-
ing the validity and/or physical significance of the assumed
protonic delocalization can be decided and/or clarified.

The first of these two predictions is given by a novel form
[18,20,21] of the connection of

(i) the proton transfer rates, k,, of Eqs. (21a,b)

with

(ii) the excess ionic conductivities of H* and OH~, 4§+ and
Adu-, in water.

The latter quantities zre conventionally defined as

Mie = Ay — Ixs, (22
with X* = K* or Na*, and
)'%)H” = )'OH‘ - )~CI’ ’ (23)

where 24 represents the experimentally measured 1onic con-
ductance of the ion X in water [34].

The conventional treatment of the connection under con-
sideration (see e.g. Refs. [30,35] for a derivation) is based
on the well established equations of Nernst
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A= ——(qD‘

T (24)
and Einstein
_ D
o 25)

The notations are as follows: q is the elementary charge, D
the diffusion coefficient describing charge transport due to
proton transfers, 7,y the average lifetime of a H;O™* (or
OH~-) ion, and {x*) the average of the square of the charge
displacement accompanying a proton transfer, In a simple
model, one may identify {x) with the mean distance between
two oxygen atoms of water molecules [30].

From these equations and the standard relation [30] for
the “relaxation times” associated with the reaction (21 a),

1

== = k, - [H;0], (26)
TrlH*
one obtains
$poT=Ck, 27

where C is a temperature independent constant. A .corre-
sponding equation holds true with respect to OH~, and
finally. one obtains

o Ky
K ko 28
You- k2 )

which represents the desired connection. A useful reformu-
lation of this result is given by using the standard Arrhenius-
type ansatz for the rate constants of Egs. (21a,b),

ki= Ci-e~BRT (i =1,2), 29)
in which case it follows immediately

e ) _ E,—E,
log( ) = C —RT (30

It will be show that the result (28), or equivalently (30), is
definitely in disagreement with the corresponding prediction
of our CSM-theory of quantum correlations.

The aforementioned precise data of Ref. [34] for the ionic
conductances in water yield the classically predicted value

L7 ~ 235 atT =25°C, (31)
k

which follows from Egq. (28), and

Ey — E; ~ =20kJ/mol for T = 15°... 55°C, 32)

which follows from Eq. (30), for the considered difference of
the activation energies; cf. [35].

We proceed now to the presentation of the predictions of
the CSM-theory [18,20]. Starting with the application of
the general ansatz (20) to the transport coefficients 14+ and
ACOH‘: iye-

Ix = Fx(Aa, ) W siinx (X =H*,OH"), (33)
and formula (19), one immediately obtains
i+ Fa+ Wit taue
= — —_ 34
Aou-  Fou- Woh- Twon- (4

Further insertion of the explicit form of the thermal de Brog-
lie wavelength

2n
mkaT

Wik = (35)

and the standard relation (26) in Eq. (34) yields the result

l%{* _ Fy+ .

Mon-_, k2
Ao~ Fou-

My + k1 '

(36)

This formula is the main result of the CSM-Theory. To make
it capable of experimental testing, we considered [[18,20] the
following slight simplification: In the present context we
may assume on physical grounds that
Fy+ = Foy-, &)
because, in both cases (21a,b), the larger part-of:the system
with Hamiltonian H.q consists of water molecuss, i.e. of the
same compound. It should be pointed out that Eq. (37) rep-
resents a physical assumption, which is based on reasonable
considerations concerning the extension and the dynamics
of quantum correlations around each “relaxing center” (clas-
sically described by Eqs. (21 a, b)), and thus it is probably of
approximative character. Nevertheless its validity and/or
physical significance is supported by the experiment; see Eq.
(37a) below.
Thus, with the assumption (37) we obtain

}‘e"_' _ Moy~ _k_2
Lo~ my+  ky

As in the above classical treatment, one can make use of the
Arrhenius form of the reaction rates k,, Eq. (29), converting
Eq. (38) to the form

log(};"*> =C’' +

«OH~

(38)

E; - E,

RT 39)

With the aid of the aforementioned precise data of Ref. [34]
for the ionic conductivities, we predicted [20] the values
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K o175 atT=25°C 40)
%
and
w _ J+21kJ/mol for X* =K*
E - EZ“{+ 1.9 kJ/mol for X* = Na* (41)

in-the aforemeritioned temperature range T = 15°...55°C.

It is important ‘to-observe that the result of the CSM-
theory, Eqs. (38,39), is fundamentally different from the re-
Sult of the conventional theory, Eqgs. (28,30). E.g, Afi+ is
proportional to ky in'the “classical” case, cf, Eq. (28), whereas
quite the opposite is predicted in the “quantal” case, cf.
Eq. (38). As a consequence, the classically predicted numer-
ical value of E —E, Eq. (32), differs even by sign (!) from
the CSM-predicted value of this quantity, Eq. (41).

Thus far the existing experimental data for the.difference
E, — E, exhibit a considerable scattering: —8.8 kJ/mol in
Ref.-[36];- =0.4 kJ/mol in Ref. [37]; +1.25 kJ/mol in Ref.
[35].

To test the above theoretical predictions, new high pre-
cision experiments (utilizing the '"H-NMR spin-echo tech-
nique) for the correct measurement of the difference E; — E,
have been carried -out in the-laboratory of H. G. Hertz
(Karlsruhe), The NMR-experimental data [26] are graphi-
cally presented in Fig. 1, together with the classical and
CSM-theoretical predictions based on the same high pre-
cision conductivity data [34]. In our treatment of these data,
we prefer to omit the experimental values of k; and %, at
T = 5.3°C, since — to our knowledge — no experimental
value of Aoy~ around 5°C exists in the literature, and due
to the well-known “anomaly” that water exhibits at 4°C.
For the temperature range T = 10.7°...58.8°C we obtain
the experirental value

E, — E = + (1.9£0.5) kJ/mol @2)

Including the data point at T'= S5.3°C one obtains
E~E, ~ +1.3 ki/mol [26]. In any case, however, the
above experimental result confirm the positive sign of
E, — E, definitely, thus being in clear disagreement with the
prediction of the classical theory.

In this context, it is interesting to point out that the well-
known “traditional” treatment of the reactions (21a,b) by
Gierer and Wirtz [38] predicts — in accordance with the
aforementioned classical treatment — a negative sign. for
Ey — Ej; cf. also [29].

The above results allow us also to test the relation (37),
which was justified by physical considerations and was as-
sumed to be approximately valid. From the data of Fig. 1
one obtains the relation.

Fn«ﬁ ~ 1.16- FOH" . (373)

The physical interpretation of this interesting finding is sub

ject to current investigations, in connection with our very
recent work [23 — 257 (which concerns the determination of
the “effective mass™ of a coherent-dissipative structure).

55 45 35 25 1815 T1/°C
e :
2 X'=Ng' .
09- conventional

30 M 32 33 3% 35 1000K/T

Fig. 1

Graphical representation of the quantity log k,/k;,as a function of
the inverse temperature. Shown are (i) the predictions of conven-
tional theory and CSM-theory, and (ii) the experimentally (NMR)
determined values of Ref. [26] for the temperature range 7 =
10,7°,..58.3°C. The data points for the two theoretical predictions
were calculated with the aid of the high-precision conductivity data
of Ref. [34] and Eqs. (28) and (38). The reference cation (K*+ and
Na*) used by the calculation of the H*-excess conductivity,
Eq. (22), is shown on the graphs

As mentioned in Sec. 2, the general theory of coherent-
dissipative structures applies directly to fermionic systems.
Current investigations being in progress now, however, seem
to indicate that the theory could be extended, under specific
conditions, to the case of bosonic systes, too. Thus it would
be very interesting to have knowledge of the experimental
values of the two corresponding activation energies (in anal-
ogy to Egs. (21a,b)) characterizing D* transfer in D,0. This
knowledge would also greatly support the further develop-
ment of the present theory.

4. Further Evidence for Proton Delocalization: Anomalous
Decrease of H* Mobility in H,O/D,0 Mixtures

The above experimental findings clearly support the
aforementioned assumption of “proton delocalization” in
water. Further investigations based on this physical idea
permitted one of us to derive a new prediction [20] and to
7. onceive a corresponding experiment for its testing. That
work predicted an “anomalous” decrease of the H* (and
probably also D*) conductance, in H,0/D,0O mixtures.

The physical considerations leading to this prediction are
as follows. As already mentioned above, quantum correla-
tions between “protons” 1n agqueous H* solutions may be
expected even within conventional quantum theory, viz. due
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" to-the large thermal de ‘Broglie wavelength of a quasi-free
H* thatis about.1.A atroom temperature. In more modein
physical terms, one can then say that the underlying physical
idea is that H™ is delocalized and correlated through: Ein-
stein-Podolsky-Rosen (EPR) correlations [39 —41] with wa-
ter protons of its surroundings “belonging” to.-H,0 or HDO
molecules. This.physical. picture is obviously in clear. con-
trast to the-viewpoint taken by quantum chemistry and mo-
lecular dynamics, where protons are considered as classical
particles being subject to the Born-Oppenheimer approxi-
:mation,

The following point is now crucial. If the well-known high-

H conductance, g+, in liquid water is caused by the as-
sumed quantum interference effects, then there must be an
anomalous decrease of 4y+ in H,O/D,0 mixtures due to
the so-called mass and spin superselection rules (cf. [40]).
In these mixtures, viz,, the possible quantum interference
between appiopriate protonic states becomes disrupted by
deuterons (“belonging” to D,0, HDO, or D* ions and) be-
ing “near” or “between” the considered protons. For exactly
the same reasons we also might expect an anomalous de-
crease of-the D* conductance in H,O/D,0; cf,, however,
the corresponding remarks at the end of the previous sec-
tion.

(A crude estimate of the decrease of Ay+ in a equimolar
H,0/D,0 mixture may be based on the model that coher-
ent-dissipative structures, in water, extend over the partial
volumina being “occupied” by protons or deuterons (and
not by oxygen atoms). A rough calculation in these lines
shows that the considered decrease would then be of the
order of 10%,; cf. [20,21].

In order to test this prediction experimentally, molar con-
ductances, 4, of different HCI/DCl and KCI solutions in
H;0/D,0 mixtures were measured [22]. The experimental
results are summarized in Figs. 2 and 3.

Firstly, let us consider the conductivity of KCl solutions.
The conductances of KCl solutions in H,O/D,O mixtures
are found to depend almost linearly on the D-atom fraction,
X, of the solvent, cf. Fig. 2. This “linearity” appears to be
independent of the concentration of the measured solutions
(C = 0.01...0.1 mol/l); see [22] for details. This result is as
expected from standard (or: classical) electrochemical the-
ory, cf. e.g. [34], because
(i) it is experimentally well established [42] that the fluidity
(i.e., the inverse of viscosity) of the considered mixtures de-
pends almost linearly on Xp and
(ii) ionic conductances are, to a very good approximation,
direct proportional to the fluidity of the solvent (Walden’s
rule).

Secondly, let us consider the conductivity data for HCY
DCl in the considered H,O/D,0-mixtures. Figure 2 shows
the resulting conductances at infinite dilution, A° plotted
against the mole fraction Xp. It is seen that at intermediate
solvent compositions the curve lies distinctly below the
straight line connecting the limiting values in pure H,0,
where Xp = 0, and D,O, where Xp = 1.

To be able to formulate the experimental results in more
quantitauive terms, we define the deviation of the measured
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Fig. 2

Molar conductances of HC/DCI, Aficype, and of KCl, Ak, in
H,0/D,0 mixtures at infinite dilution and 7" = 25°C as a function
of the mole fraction Xp of deuterium. Also shown is the “excess
conductance”, determined from the difference between the data for
HCI/DCI and KCl. Solid and brocken lines are guides to the eye.
Error bars are smaller than the size of each data point, (Reproduced
from Nature, Ref. [22])

conductance of a mixture, of concentration C, A(Xp, C),
from that determined by linear interpolation between the
values of the two pure solutions (Xp = 0 and 1), Ay, (Xp,
C), as

AA(XD, C) = A(XDr C) - Alin(XD! C)

= A(Xp, C)—[(1 = Xp) - 4(0, C) + Xp 4(1,C)]
43)
and the corresponding relative deviation in per cent by

AY(Xp, C) = 100 - Ad(xp, C)/Aya(Xp, C). 44)
The relative deviation at the equimolar solvent composition
is 4%(0.5, C = 0) ¥ —5.1%.

Furthermore, and as already stated in the previous sec-
tion, the quantum effects of interest are expected to be re-
flected by the excess conductance, which is defined by the
difference of the data obtained for HCl/DCl and KCl. (This
definition is based on the fact that the main thermodynamic
data of these two solutions are very similar [34]). The cor-
responding “anomalous decrease™ of the excess conductance
at Xp = 0.5 is now —7.7%, cf. Fig. 2.

For illustration, the following point may also be observed.
The aforementioned “disrupted quantum interference™ is
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Graphical representation of the experimentally determined molar
conductances of HCI/DCl in H;O/D;0 mixtures at-25°C as a func-
tion of solvéent composition (expressed by the atom fraction Xp of
deuterium) and of acid concentration C. {Data were taken from
Ref. [22])

easily seen to become most effective at X, = 0.5, thus lead-
ing to a maximum of the predicted anomalous decrease of
the H*/D* conductance at Xp = 0.5. The experimental
data confirm this expectation, foo,

The analysis of the experimental results shows also that
the magnitude of the anomalous decrease under consider-
ation is independent of the acid concentration (C = 001 ...
0.5 mol/l), cf, Fig. 3. The small experimental error of +0.1%
strongly supports the significance of these results. For full
details, see [22].

In conclusion, we found that the conductances of KCl
solutions in H,O/D,0O mixtures are completely in accord
with standard electrochemical theory. But, at the same time,
it is the almost linear dependence of A% on the mole frac-
tion Xp in connection with linear dependence of the fluidity
of H,0/D,0 on Xp that proves that the observed “anom-
alous” decrease AA° of the (excess) molar conductance of
HCI/DClis — plainly speaking — a specific property of the
H* and D™ jons and the H,0/D,O solvent.

Therefore it is hardly conceivable how the considered ef-
fect could be interpreted in terms of standard (or conven-
tional) electrochemistry. At the same time, the presented
experimental results are in line with the underlying physical
picture of H* delocalization in water and clearly confirm
the prediction [20] of the “anomalous” decrease of the H*/
D* conductance in HyO/D,0 mixtures.

5. Concluding Remarks

As the short outline of Sec. 2 shows, our CSM-theory of
(thermally activated) quantum correlations in condensed

C A Chatzxdlmlmou Drelsmann et'al.; l?roton Delocalization etc. ) 271

matter.[4] is baseéd on the first principles of quantum theory.
Thus the cooperative pheniomenon+being described by co-
herent-dissipative structurés appears to represent.a new
form of “selforganization” of matter in.the microscopic level

.of physical description.

~ Recent applications of the.general theory to thus far five
different physical contexts (i.e., the two applications consid-

. ered above [18,20, 22],,1omc conductivity of molten alkali

chlorides .[19], spin waves in_magnetic systems above T.

[23,24],.and quantim cogrelation effects in high-7; super-

conductors [25]) demonstrated the predictive power of the
theory and the — more or less- — universal ;character of
quantum correlations in condensed matter. In this paper,
we discussed two surprising predictions of the CSM-theory
concerning proton mobility and proton transfer-reactions in
water, and also the results of two very recent-experiments
which clearly verified these predictions [22,26].

The above theoretical investigations and experimental
findings indicate that coherent-dissipative structures may
play an important role in the dynamics of H*-transport and
H-bond formation (cf. [43, 44]) in further physical, chemical
and 'biological systems. Further work is in progress,
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Rate Processes in Proteins

Hans Frauenfelder, G. Ulrich Nienhaus, and J. Bruce Johnson
Department of Physics, University of lllinois at Urbana-Champaign, 1110 West Green Street, Urbana, 11 61801 USA

Chemiical Kinetics / Conformational Substrates | Flash Photolysis [ Nonequthbrmm Phenomena |
! Protein Dynamics

Flash photolysis experiments on carbonmonoxymyoglobin over wide ranges in time and temperature
provide information about the rate processes involved in the rebinding reaction. The non-exponential
rebinding at low temperatures shows that the myoglobin molecules are frozen into a large number of
conformational substates with different enthalpic barriers. Above 160 K we observe a relaxation process
that shifts the peak of the barrier distribution from ~ 10 kJ/mol to ~ 21 kJ/mol. This process is non-
exponential in time and does not obey the Arrhenius law. Above 220 K equilibrium fluctuations between
the conformational substates lead to an averaging of the binding rate distribution and to the opening of
pathways for the ligands to escape from the protein molecules.

1. Proteins as Laboratories for Rate Processes

Proteins form excellent laboratories for the study of rate
processes. Nearly every aspect of rate theories is important
for the elucidation and explanation of the function of pro-
teins. In turn such investigations may shed light on rate
theories. A partial list of keywords includes: Kramers theory
[1,2,3], Landau-Zener-Stiickelberg theory [4,5,6], tunnel
effect [7,8,9], stochastic approach [10, 11], non-exponential
processes and distributed barriers [12], gating [2,13], and
pressure effects [14]. In the present contribution we select
some other aspect, namely the relaxation and fluctuation
processes in proteins. These processes are crucial for the
function of proteins, but they are also of considerable in-
terest to the study of rate theornies. The relaxation processes

Ber. Bunsenges. Phys. Chem. 95 (1991; No. 3
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in proteins display characteristic similarities to those in
glasses [15]. Since the corresponding theory is still in a state
of flux, detailed studies of the dynamics of protein reactions
may add to an understanding of rate processes in all com-
plex systems.

Our approach to studying rate processes in proteins is
straightforward: We select a “simple” protein, explore a
“simple” reaction experimentally in great detail, and con-
struct the simplest model that fits the data. The binding of
a small ligand like CO or O, to the dioxygen-storage protein
myoglobin (Mb) satisfies our selection criteria. The first step
in the exploration of the dynamics of such an apparently
simple process is the construction of the reaction energy
landscape, the second the examination of the conforma

0005-9021,91,0303-U272 § 3.50 +.25,0
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ijgnal energy. landscape: Finally, the twd»‘langscapcs aré
joiged‘;o describe the reaction.in terms of:the dynamic fea-
tures of the protein. s

2, The Reaction Energy Landscape

Myoglobin is. a small globular protein with a size of
45.x 35 x.25 A® and a molecular weight of 17,800 daltons.
It consists of a. polypeptide chain of-153 amino acids en-
closing the disk-shaped heme group. Thé CO molecute binds
to.the central heme iron in the reaction

Mb + €O == MbCO. §)

While:this reaction was first described as a simple one-step
process [16], a long scries of experiments has révealed an
increasingly complex picture [12,17,18], The most detailed
inforimation about ligand binding has been obtained from
flash photolysis experiments petformed over a wide tem-
;perature range. Fig, 1 shows the flash photolysis kinetics of
MbCO between 60 and 300 K. These data can be explained
with the reaction landscape for the binding of CO to my-
oglobin as shown in Fig. 2b, The effective enthalpy is-plotted
as:a function of the reaction coordinate. Two barriers are
-involved in the binding process. The inner barrier is asso-
ciated with the final binding step close to the iron, the outer
one with the gate between the heme pocket and the solvent.
The system Mb + CO is initially in state A, where the ligand
is bound to the heme iroii. A short laser pulse cleaves the
bond and the system moves to state B where the ligand is
in the heme pocket. Below 200°K, the ligand cannot escape
from the pocket because the barrier between B and S is too
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Fig. 1

Flash photolysis kinetics of MbCO in 75% (v/v) glycerol/phosphate
buffer (pH 7). The absorbance change A4 at 440 nm is given as a
function of log ¢. The sample was prepared with a partial pressure
of CO of 0.05 atm (except for the trace denoted by “High [CO]",
where it was 1 atm)

— - >rc
reaction coordinate

Fig. 2

(a) Schematic cross-section through a myoglobin molecule showing
a hypothetical ligand pathway.

(b) The effective enthalpy H of the system Mb + CO is given as a
function of the reaction coordinate rc

high. Therefore, ..;rebinds internally (Process I, B— A). The
internal process should be exponential for a well-defined
barrier heigth Hya. The observed non-exponential behavior
is explained with an inhomogeneous population of myoglo-
bin molecules that possess different activation enthalpies
Hy, and consequently rebind ligands with different rates. The
rebinding is described by

N = g dHgy g(Hpa) e=H0TeaT)t 2

Ni(t) is the fraction of molecules that have not yet rebound
a ligand at time ¢ after the photolyzing flash. g(Hy,) is the
probability density of finding an Mb molecule with enthalpic
barrier Hg, in the ensemble. For MbCO g(Hp,) has a max-
imum at about 10 kJ/mol. The rate coeflicient k(Hps, T)
above about 60 K is given by the transition-state expression

[19]
k(Hga, T) = Apa(T/To) e~ "oRT €)

At lower temperatures, the rate k (Hpa, T) is influenced by
quantum-mechanical tunneling effects [8].

A second, slower process is observed in the flash photo-
lysis kinetics above 200 K. This process is exponential and
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g _dependent on'the CO concentration. It is'due to those inole-
cules- that :lose-their ligands to -the solverit. Subsequently,
other hgands will diffuse from-the solvent toward' the-pro-
tein, enfer the heme pocket through the protein matfix and
bmd to the iron (Process S, S=—»B—A).

The Adéscription of ligand binding with the reaction energy

* landscape sketched in Fig. 2b cotresponds to the motion of
‘a partxclc in a.fixed "potential. This single-particle model
reflects the general features of the reaction well. Neverthe-
" less, it-oversimplifies the picture, because it-does hot account
for the:influence of protein motions. It will: be shown in

Section.4 .that a more realistic description -of the binding
process has to incorporate time- and temperature-dependent
*'barriers which arisc from protein relaxations and fluctua-
tions. These are strongly influenced by the dynamics of the
surrounding solvent [2,20].

3. The Conformational Energy Landscape

To understand the influence of protein motions on the
ligand- binding Teaction we must take a closer look at the
states in which these molecules exist and at the laws that
govern the transitions between the states. Most proteins
perform.some kind of function such as transport of matter
.or enzymatic activity. Therefore they must have at least two
different conformations which generally differ in structure
and properties. Myoglobin for example has a ligated and
an unligated conformation, Within a,given conformation, a
protein molecule does not .possess a unique ground state,
but a large number of nearly isoenergetic states' which-we
call conformational substates (CS) {21,22]. The phenome-
non CS is also found in other complex systems like glasses
[23] and spin glasses [24]. Transitions between conforma-
tional'substates involve two different types of motions. Equi-
librium: fluctuations (EF) occur .between the different con-
formational substates at sufficiently high: temperatures.
Transitions between different conformations (states) are due
to nonequilibrium motions. We call those functionally im-
portant motions {FIM). Both types of motions are not in-
dependent of each other, but related by fluctuation-dissi-
pation theorems.[25].

First evidence for the existence of conformational sub-
states came from the nonexponential rebinding observed
with flash photolysis experiments at low temperatures [12].
Over the past 15 years, information about conformational
substates has been continuously accumulated. Experiments
on MbCO give evidence that the conformational substates
are arranged in a.hierarchy [17] as depicted in Fig. 3. The
diagram gives a one-dimensional cross-section through the
multidiménsional conformational energy landscape of
MbCO. The substates are grouped into a number of tiers,
three of which are shown in the figure. The substates of tier
0 (CS0) are separated by the highest energy barriers. Within
each of the CSO the molecule can assume a large number of
substates of tier 1 (CS1), separated by smaller barriers than
the CS0. Each CS1 is again subdivided into substates CS2
and so on.

Evidence for substates of tier 0 is derived from infrared
absorption experiments on MbCO [20]. They reveal three

g |
Econf MbCO
* ccO
| W »
= ccl
§ - \
- cc2
Fig. 3

The hierarchical arrangement of conformational substates (CS) in
MbCO. A one-dimensional cross-section through the multidimen-
sional conformational energy landscape is sketched as a function
of the conformational coordinates of tier i (cc i)

major stretch bands for the CO ligands, which we denote
by Ay Ay, As corresponding to three different substates.
Slight differences in their structure have been proven by
measurements of the tilt angles of the CO molecules against
the heme normal [26] and by the x-ray structure analysis
[27]. The rebinding kinetics of these substates is markedly
different. Within each CS0 substate the ligand rebinding is
non-exponential at low temperatures [20]. Therefore we
conclude that each CSO contains a large number of CS1
substates. Lower tiers are less well explored. Rebinding ex-
periments after extended illumination give evidence for CS2.
The existence of even lower tiers of substates is implied by
specific heat measurements on proteins at temperatures be-
low 10 K [28].

The hierarchical arrangement implies that the system is
only ergodic at sufficiently high temperatvres where fluc-
tuations within all tiers occur. As the temperature is lowered,
fluctuations will gradually freeze out, first among the sub-
states of the highest tier, then successively in the lower tiers.
The degree of nonergodicity is thus dependent on time and
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temperature. The freezing of the EF0 and EF1 occurs very
smoothly with temperature and is similar to a glass transi-
tion. The transition temperature depends on the glass tran-
sition temperature T, of the surrounding solvent. Therefore,
we call the transition a “slaved glass transition”.

The hierarchical arrangement poses restrictions-on the
dynamics of the system. A transition between two arbitrary
substates depends on the way in-which the two are con-
nected in this hierarchical space. The connection may be
ultrametric. Remarkable analogies between the dynamics of
ultrametric systems and proteins have been found [29].

4, Relaxation Phenomena and Equilibrium Fluctuations
4.1 The Relaxation Mb* — Mb

Below 160 K proteins are frozen in their particular sub-
states. Therefore, the rebinding is characterized by a barrier
distribution g(Hgs). Process I speeds up with increasing
temperature as expected from the Arrhenius law for the rate
coefficient & (Hga, 7). Between 160 and 180 K this increase
slows;above 180 K a reversal sets in so that Process I slows
down with increasing temperature (see. Fig. 4).

* ¥ L) ¥ L] L] ’ T
3

log AA/0D)

log (AA/0D)

(b)

log (t/s)

Fig. 4

Rebinding data and fits to the retaxation model for MbCO. (a)
Process 1 at 160—180 K. (b) Process I at 190—210 K. Dashed lines:
Prediction for Process 1 if no relaxation Mb* — Mb occurs. Solid
lines: The relaxation Mb* — Mb was taken into account to fit the
data (see Eq. (6))

An explanation for this — at a first glance — surprising
behavior can be found by taking a closer look at the molec-
ular structure of myoglobin. The room temperature x-ray
coordinates tell us that the iron atom is about 0.35 A away
from the heme plane in deoxy Mb [30]. On binding a ligand,
the iron has to move closer to the heme. In MbCO, the iron
has been reported to be completely in the plane of the heme
disk [27]. At temperatures below 160 K, the globin matrix

is frozen. Thus, after photodissociation the iron cannot
move fully out of the plane. The structure of this low tem-
perature photoproduct is denoted by Mb*. Above 160 K
the iron is able to relax into the deoxy position on the time
scale of a photolysis experiment. The motion of the iron is
accompanied by an increase of the enthalpy barrier Hp, for
rebinding. Consequently, a slowing of the kinetics is ob-
served.

Evidence for this scenario comes from kinetic experiments
with Band III, a weak absorption bang in the near infrared
(~760 nm) that is only present in unligated myoglobin, ei-
ther deoxy Mb or Mb*, Band Il arises from a charge trans-
fer transition involving iron d- and porphyrin n-orbitals
(31] and is therefore sensitive to structural details near the
heme iron. We studied this band in photolyzed Mb* (CO)
in the temperature range between 10 and 160 K. As ligands
rebind, the area of this band decreases while its position
shifts to higher wave numbers, The explanation for this shift
is as follows: Band HI is inhomogeneously broadened. Dif-
ferent substates give different contributions to Band III so
that it is approximately a Gaussian superposition of Lor-
entzians with peak positions v, Qur experiments show that
the position v and the barrier height Hy, are linearly related
[18]. Such a relation is expected if both the enthalpy barrier
and the charge-transfer transition depend in a similar way
on the out-of-plane distance of the iron, From the difference
of 116 cm™! between the position of Band 111 in deoxy Mb
and Mb* (CO) at 10 K and the measured relation between
Hg,a and v we estimate an increase of the barrier for rebind-
ing of about 12 kJ/mo! as the iron shifts from the position
in Mb* to the fully relaxed position.

This relaxation Mb*—Mb can be introduced into the
kinetic equations that describe the rebinding process after
flash photolysis. The increase of the rebinding barrier is
modelled by

Hpr(t.T) = Ho+ AH*[1 — &*(1,T)]". C)]

Immediately after photodissociation the barrier height
equals Hy. It approaches the value Hy -+ AH* with a time
dependence given by the relaxation function ¢*(¢,T') as the
iron moves further away from the heme plane. Conse-
quently, the rate coefficient for rebinding k (Hp, (£, T), T') be-
comes time-dependent. For a single barrier the differential
equation dN(t,T) = —k{Hpa(t.T), T) x Ni(t,T) leads to

Ni(t, T) = exp [— g k(Hga(t, T))dt']. )

The rebinding data shuw that the entire barrier distribution
shifts without markedly changing its shape. Therefore, the

. fraction of molecules N, (t, T) in the ensemble that have not

yet rebound a ligand within the time ¢ after the flush is given
by

N T) = OI dHy g(Ho) exp [— g k(Hgat',T) dz']. ©)

e,
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Thé experiments show that the relaxation function is strong-
ly nonexponential in time as we also observe when studying
protein -relaxations after pressure jumps [14]. A stretched
exponential fits our data well

P*(t, T) = exp[—Kk*(T)t]? . m

If the temperature dependence of the rate coeflicient x*(T)

is described by an Arrhenius relation, the pre-exponential.

factor becomes- unphysically large. We-consequently use.a
relation that'is known to describe relaxation phénomena in
glasses and synthetic polymers,

k*(T) = A* exp[—(E*/RTY].. ®)

This relation has been derived for a random walk of an
excitation within a Gaussian density of states [32, 33,34, 35].
In Fig. 4 we show the rebinding of MbCO together with
fitted curves. The reversal of the kinetics with-t¢inperature
near 180 K is very well described by a barrier distribution
g (Hpa) that shifts as a whole to higher values without chang-
ing its shape. The value AH* of 11 kJ/mol is in good agree-
ment with the estimate of 12 kJ/mol from the kinetic ex-
periments on Band I11. The other parameters obtained from
the fit are A* = 10" s=!, E* = 10 kJ/mol, f = 0.24.
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(a) The measured survival probability N(¢, 240 K) is plotted as a
function of fogt and decomposed 1nto the exponential solvent
process ‘Ns(t, 240 K) and the internal process Ny(t, 240 K).

(b) The distribution function g.x(Hga, T) at 240 K. Protein mole-
cules in substates with Hg, < H, have rebinding rates faster than
7=, They rebind before hopping to another substate. Proteins
in the hatched part have Hgs>H; and thercfore kgy <7~ .
They fluctuate from CS to CS; their ligands can erther rebind
internally or move into the solvent

e

4.2 Equilibrium Fluctuations

Molecular dynamics simulations show that the protein
structure has to fluctuate in order to open pathways for the
ligand to escape [36]. These motions set in at about 200 K
[15,37]. Our flash photolysis experiments confirm these re-
sults: Above 200 K some photodissociated CO molecules
escape into the solvent, and the subsequent rebinding is
approximately exponential in time (see Fig. 1):

Ns(t.T) = Ns(t, T) exp[- 2> 1] . ©)

We decompose the rebinding curves into the solverit process
Ns(t,T) and the internal process Ny(t, T) as shown in Fig.
5a. At early time N;(¢, T') decreases slowly and non-expo-
nentially. From a certain time 7, on a nearly exponential
drop-off is observed leading to a rapid depletion of the in-
ternally rebinding molecules. It is caused by two effects: (i)
CO molecules migrate into the solvent and rebind from
there. (i) The distribution of rate coefficients k(Hgyy, T') col-
lapses into an average value. We assume that both effects
are due to equilibrium fluctuations in tier 1 (EF1), charac-
terized by an average rate coefficient {x,>. The inverse of
the time 7, gives an estimate for the fluctuation rate {x;).

The influence of the equilibrium fluctuations can be ex-
plained with an effective enthalpy distribution, gex(Hua; T),
as sketched in Fig. 5b for T = 240 K. It is much broader
than the low temperature distribution because of the relax-
ation Mb* — Mb: Molecules with small barriers rebind.
ligands at carly times without having shilted significantly,
molecules with high barriers rebind more slowly and there-
fore shift to even higher barriers before rebinding. The dis-
tribution gy (Hsga, T) is divided into two parts separated by
the enthalpy H,(7) given by
H((T) = RT In[AaT/Kk> To) . (10)
Proteins in the shaded area experience equilibrium fluctu-
ations. They rebind the ligand with an average rate <{kps)
< {kyy either from the pocket (Process I) or from the solvent
(Process S).

4.3 The Viscosity Dependence of Protéin Motions

The relaxation Mb* — Mb and the equilibrium fluctua-
tions .(EF1) appear to have their origin in quite different
types of motions because the distribution of barriers g(Hpa)
shifts without narrowing at temperatures around 180 K. We
tentatively assign the relaxation Mb* — Mb to the second
tier of the substate hierarchy and call it FIM2.

Another difference between the two dynamic processes
becomes obvious when looking at rebinding curves that
were obtained using samples with different solvents. In prin-
ciple, both the relaxation Mb* — Mb and the equilibrium
fluctuations could be influenced by the viscosity of the sol-
vent around the protein molecules. Fig. 6 shows the kinetics
of Process I for MbCO in three solvents with different vis-
cosities. All three sets of data were taken at 250 K. The
nonexponential part of the rebinding curves is almost iden-
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tical for-the three cases. Therefore, the solvent viscosity # References

has little or no effect on the relaxation. Mb* — Mb. This
observation is also supported by measurements with MbCO
embedded in ice or solid-poly- (vinyl alcohol) [12]. In arigid
matrix (7 — ), no solvent process appears, but Process 1
is still influenced by the rélaxation Mb* — Mb. We conclude
that the shift of the iron out of the heme plane is a process
that is controlled close to the heme. It involves correlated
motions of only a small part of the protein. In contrast, the
‘equxhbnum fluctuations (EF1) depend strongly on viscosity
and must-involve-larger parts including the interface be-
tween protein and solvent.

W’“o#‘ A‘“
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N n “heay, \39% ©
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o 75% G ‘.
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log (t/8)
Fig.6

The viscosity dependence of the rebinding of CO to Mb at 250 K.
The rebinding function Ny(t) for Process I is shown for the solvents
60% ecthylene glycol/buffer, 75% glycerol/buffer, 99% glycerol/
buffer

5. Beyond Kramers

The study of a biological’ process like the binding of a
ligand to a small heme protein reveals exciting phenomena
that influence the kinetics of the reaction. At low tempera-
tures the enthalpic barriers are distributed within the en-
semble. Glass-like, non-exponential relaxations are observed
which lead to an increase of the rebinding barriers with time.
At sufficiently high temperatures the proteins perform fluc-
tuations between a large number (> 10°) of conformational
substates. As a consequence, the heights of the activation
barriers fluctuate with time.

Proteins are exceedingly complex systems. Nevertheless,
they establish a highly organized environment in which fun-
damental aspects of rate processes can be investigated. A
deep understanding of biological processes will only be pos-
sible if the reaction theory of the underlying chemical proc-
esses is developed. Therefore, the study of rate processes in
proteins offers a challenge to both experiment and theory.
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Stiffness Effects in Multidimensional Diffusive Barrier Crossing

Noam Agmon and Savely Rabinovich
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Chemical Kinetics [ Diffusion [ Liquids [ Photo Isomerization [ Viscosity
The, model of Agmon and Kosloff for two-dimensional diffusive barricr crossing is extended. We dem-

onstiate-haw.an-increase in stiffness of the potential perpendicular to the reaction coordinate leads to

viscosity dependent rates which are closer to the one-dimensional Kramers result. The range over which
the dynamics are truly two dimensional is characterized by a fractional viscosity dependence of reaction
rates and viscosity dependent activation energies, It is a transition region between Kramers behaviors
observed in the two extreme limits, A simple kinetic approximation rationalizes these observations as
arising from two competing:_..aways. It shows surprisingly good agreement with the full calcutation,

1. Introduction

In the last decade the Kramers [1] model of diffusive
barrier crossing has been revived and extended as: part of
an effort to understand molcular chemical transformations
in solution. Some of the review articles published in the last
few years are listed below [2—6]. Until recently much of
the theoretical research focused on non-Markovian (me-
mory) effects and frequency dependent friction {2~8]. In
this approach other degrees of freedom are usually repre-
sented as a harmonic bath, It scems that presently attention
is directed towards the understanding of truly multidimen-
sional barrier crossing phenomena {9—13].

Advances in theory are motivated by parallel progress in
experiment, especially in the study of photochemical iso-
merization following ultrafast laser excitation [14]. One
model system that has been extensively studied is the iso-
merization of stilbene, both in solution and pressurized
gasses [14—23). Focusing on the high friction limit, it is
often found [15—17] that the dependence of the isomeri-
zation rate coefficient, &, on the solvent’s macroscopic (shear)
viscosity, #, is weaker than predicted by the Kramers theory
[1]: Instead of an inverse viscosity dependence, one has
k=by, O0<axi 1)
with constant a and b. A similar viscosity dependence is also
observed in ligand binding to myoglobin [24].

The above deviation from Kramers' prediction can be
explained in several ways: (i) Non-Markovian theories
[2,5,7,8] can predict slower than 1,5 viscosity dependence,
though often with non-realistic potential parameters
[15,17,20a]. (i)) Macroscopic viscosity may be a poor ap-
proaunation to the microscopic friction. Indeed, better

Ber. Bunsenges. Phys. Chem. 95 (1991 Ne. 3

O VCH Verlagsgesellschaft mbH, 1W-6940 Wemhenn, 1991

agreement with experiments showing the fractional viscosity
dependence, Eq. (1), can sometimes be obtained {16] using
the conventional Kramers theory with microscopic friction
assumed proportional to the rotational diffusion lifetime. (iii)
Potentials may vary systematically with solvent composition
[18,19]. (iv) Multidimensional effects may be dominant
[10-13]. While we concentrate bélow on multidimensional
effects, this by no means implies that we believe other effects
listed above to be unimportant in explaining the experi-
mental results.

To our knowledge, Agmon and Kosloff [11] were the first
to consider the explicit solution for diffusional barrier cross-
ing dynamics in more than one degree of freedom, with
anisotropic diffusion and a potential more general than a
channel connecting reactants and products [10}. Their
model was motivated by earlier work on hemeprotein dy-
namics [9] and by the experimental observation [15] that,
while trans-stilbene shows a fractional viscosity dependence
(a < 1), its stiff counterpart (trans-“stiff” stilbene, see Fig. 1)
conforms to Kramers kinetics (¢ = 1). The evident difference
between these two molecules is that “stiff” stilbene has only
one active degree of freedom in its isomerization process
(rotation around. the double-bond, dihedral angle 0),
whereas stilbene has an additional rotational motion avail-
able (around the phenyl-carbon bond, dihedral angle ¢).
The effect of the perpendicular degree of freedom, ¢, is mani-
fested in two ways. First, the barrier for 0-isomerization is
expected to decrease as the phenyl rings are rotated out of
planarity, due to a decrease of n-orbital coupling. Such an
effect still awaits verification by quantum chemistry calcu-
lations [25]. Second, the diffusion tensor in these two co-
ordinates is expected to be anisotropic. The phenyl ring
rotation displaces much less solvent than the isomerization

0005-9021,91,0303-02°8 $ 3.50 + 25,0
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motion.and .s therefore less .sensitive ‘to macroscopic vis-
cosity. In addition, the 6-motion might be less viscosity sen-
sitive when. the ‘phenyl rings cut through the solvent with
their narrow. side-i.e., the diffusion coefficient in 8 decreases
‘as the phenyl" rings are rotated out of plane [26]. This-last
eﬂ'ect has not yet been incorporated in‘the model.

=é=’?. '%l

t - stilbene t-"stiff " stilbene

Fig. 1
Chemical structure of stilbene and-biindanylidene (“stiff”-stil-
bene)

By solving numerically the time-dependent Smoluchowski
equation in two dimensions for a potential surface and dif-
fusion tensor with the above mentioned properties, it was
shown [11] that viscosity dependences of the form [1] arise.
However, it was never explicitly demonstrated that the ki-
netics become more Kramers-like as the potential along the
perpendicular coordinate ¢ becomes stiffer as, for example,
one expects for “stiff"-stilbene. In the present contribution,
we extend the results of Ref. [11] by adding to the potential
surface a parabola in ¢ and investigating the viscosity de-
pendence as a function of its stiffness, The investigation in-
voles a wide range of viscosity. and temperature. A deeper
investigation of two dimensiorial models is timely, especially
because in the last year or so several experimental results
have been interpreted with the aid of similar ideas
[20b~-22].

2. Theoretical Procedures

We investigate below a simple extension of the Agmon-
Kosloff hypothetical stilbene potential [11], namely

V(6.¢) = Vo(0,4) + V4(0.9) + Bo* @

with the functions ¥ and ¥, given in'Ref. [11]

Ve(6, @) = Qp[3cos(20) — 6¢cos(48) + cos(60)
—4cos(0)1[1 + acos®(¢)]/[8(x + 1)]

(3a)

Vs(6,8) = Qs[3cos(2¢) — 4cos(4¢) + cos(6¢4)]/8 (3b)
with Qp =3 and Q4 =2 energy units (these units were cho-
sen such that the barrier resembles that of stilbene in al-
kanes, ca. 14,7 kJ/mol) and o = 4. For f = 0 the potential in
Eq. (2) reduces exactly to that of Ref. [11]. Increasing values
of § mimic increasing stiffness of the phenyl ring rotation
(¢-coordinate). Experimentally, such increased stiffness can
be obtained by a series of aliphatic.rings of decreasing size
e.g, 7—5 membered rings [16b,22]. We stress that the stiff-
ness parameteis, B, never modifies the energy profile along
the one-dimensional projection of the reaction coordinate
(¢ =0). A comparison of a “normal” (f=0) and “stiff”
(B > 0) potential is shown in Fig. 2: The initial trans config-
uration with in-plane phenyl rings is at the origin of the
coordinates (0 =0, ¢ =0) while the final “perpendicular”
conformation is at § = /2 and ¢ =0.

The diffusion tensor, D, is assumed diagonal and the di-
agonal elements are denoted by Dps and Dyg As in
Ref. [11], we assume that

Dyg = const = 1 “)

in units of radian®/time, while Dy, varies. This represents an
extreme idealization of a situation where the smaller am-
plitude motion of the phenyl ring is less sensitive to solvent
viscosity compared with the larger amplitude isomerization,
The rate coefficients are considered a function of D', which
is assumed proportional to the macroscopic viscosity, #. In
relation to interpretations [16] stressing the role of devia-
tions from the Stokes-Einstein hydrodynamic relation, we
note that here the reaction coordinate 0 strictly conforms
to such a relation, while the assumed (large) deviations from
classical hydrodynamics are only in the perpendicular co-
ordinate, ¢.

0.5

1.0 -1.0

8/ (rad)

Fig. 2

Effect of the stiffness parametu's, B, on the potential surface, Egs. (2) and (3). Equxpotentml contour spacings are 1 and 2

B =0 and 10, respectively

energy unit for
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The-dynamics-on- the potential surface are assumed [11]
to obey the Smoluchowski (diffusion-in-a-potential-field)
eq_uatiofl

0p8,¢,8)0t = V-D-[V+VV(0,0)/ks T1p(0,,t) 8]

for the time evoliition of the probability density distribution,
p(6,¢.1), in the two dimensional space (8, ¢). In Eq. (5), T is
the absolute temperature -and kg is Boltzmann’s constant.
The initial distribution is a delta function at the origin of
the coordinates,

p(8.9,0) = 5(6) 6(¢) - ©)

This differs from the initial distribution in Ref. [11], which
was like a Gaussian centered at the origin. This difference,

=0

however, persists only for the first fow time steps during
which the initial distribution thermalizes in the reactant’s
well. As long as the isomerization barriers are high, the
barrier crossing process evolves on a considerably slower
time scale.

A detailed description of the computational procedures is
given in Ref, [11], where the spatial operator was evaluated
by a fast Fourier transform (FFT) routine, and time evo-
lution obtained by Chebyshev propagation. The Chebyshev
expansion [27] allows us to take comparably large time
steps. Unfortunately, the FFT algorithm may be tricky to
implement, and does not easily handle delta function dis-
tributions or complicated boundary conditions. In the pres-
ent calculation we have replaced the FFT procedure by a
Master operator, This amounts to discrctizing the (6,¢)
plane and assigning transition probabilities among nearest-

0'5

=10

{t=4

-0.5

0.5

@/7 (rad)
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1t=16

1.0 -1.0
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0.5 0. 1.0

Effect of stiffness on the density distribution, p\8, 9,1, propugaied vu the putential surfaces of Fig. 2. Luganthmic contours for p =27,

100, n = 1,2,...
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neighboring points along 6 or ¢-(no diagonal transitions
are allowed) in such a way that Eq. (5) becomes a Master
equation with detailed balancing. While additional details
may be found in Refs. [9,28,29], we stress that implement-
ing finite-differencing in space via a prescription in- which
detailed-balancing is rigorously obeyed, ensures that as
t— 00 we obtain the exact equilibrium distribution namely,
exp[—V(0,¢)/kp T] properly normalized. The Master op-
erator is one line of computer code, compared with the large
software package needed to implement the FFT routine.
To obtain the reaction rate, we first integrate the density
distribution, p(6,¢,t), over the reactants’ region to obtain
the reactants “survival probability”, S(f). This quantity is
denoted by Q(#) in Ref. [11]. The reactants’ region is as-
sumed to be separated from the products’ region by the ridge
line on the potential surface. For a potential with the simple
shape shown in Fig, 2, these ridges are straight lines parallel
to ¢, at 8~ 4 0.26m. Next, we fit S(t) to the solution of a
2-state kinetic scheme, reactants & products, which is

S(f) = Seo + (1 — Si) exp(—1/7) (7)
v = ktk, So =kt. (7b)
Table t

Here k;is the forward (reactants — products) rate coefficient,
while k, is a similar quantity for the reverse direction. The
ultimate equilibrium survival probability, S, can be cal-
culated analytically from the potential as the integral of
exp[— V(0,¢)/ksT] over the reactants’ region divided by
its integral over the whole space. With the knowledge of S,
we fit.our S(t) data to Eq. (7a) to determine t and then
evaluate (say) the forward rate coeflicient as k= (1 —S..)/z.
This procedure differs from that of Ref. [11], which used
both S, and 7 as fitting parameters.

3. Results

We have propagated the Smoluchowski equation (5), starting
from a delta-function initial distribution, for several values of
Dgp(Dge = 1 rad¥/time) and three valucs of the stiffness parameter,
B, i the potential function of Eq. (2). The probabulity density was
subsequently integrated and analyzed via Eq. (7) to yield rate co-
efficients. These calculations were carried out on a Convex com-
puter with single precision accuracy and a grid of 64 x 32. This grid
represents the rectangle —n < 0 < &, —n/2 < ¢ < n/2, with
periodic boundary conditions at its edges. Propagations on a dou-
bled grid (128 x 64) yielded rate cocfficients that differed by 5% at
most. In several cascs, we have propagated to extremely long times
so that the final distribution was very close to the equilibrium
density. We verified in these cases that the analytic values of S,

Parameters used 1n the propagation of Eq. (5) on a 64 x 32 gnid and parameters obtained from the kinetic analysis via Eq. (7). Dy = 1 rad¥/time. np, At
and n, are number of Bessel coefficients, time step and total number of time steps, cf. Ref, [11]. Note the gencral agreement of Ay for f=0and kg7 = 06

with data in Table 1, runs 1 and 2, of Ref. [11]

ke T B S Do ng At e 1000/7 1000 k¢
04 0 0.0676 10 229 0.1 100 131.7 123
1 217 0.5 100 69.8 65.2
0.1 226 1.0 100 35.0 327
1 0.0205 10 229 0.1 500 66.3 649
. 1 A7 0.5 400 10.7 10.5
0.1 226 1.0 1000 146 1.43
0.6 0 0.1514 100 219 001 200 7451 6323
10 229 0.1 30 1006 854
1 139 0.2 30 249 210
0.1 226 1.0 60 62.6 530
001 216 1.0 200 725 617
0.004 215 1.0 200 0.755 0.640
| 00733 100 219 0.01 200 6307 5844
‘ 10 229 0.1 50 688 638
1 27 0.5 80 974 90.3
0.1 226 1.0 200 124 1.5
0.01 216 1.0 2000 1,39 1.28
0001 215 1.0 20000 0.148 0.137
10 0.0639 100 219 0.01 200 5100 4773
10 229 0.1 100 516 481
1 217 0.5 200 513 48.1
0.1 219 0.5 600 513 4.81
1 0 0.2385 10 229 0.1 200 5416 4221
1 100 0.1 200 668 509
0.1 226 1.0 200 91.6 69.8
1 0.1881 10 229 0.1 200 4276 3470
| 139 0.2 200 486 394
0.1 226 1.0 300 55.7 45.1
10 0.1589 10 229 0.1 200 3127 2630
| 139 0.2 300 313 265
0.1 226 1.0 500 31.8 267
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are reproduced to 3—4 digit accuracy. Propagation parameters and
rate coefficients obtained are collected in Table 1.

Fig. 3 compares the time dependence of the probability density,
p(6,¢,¢t), for two values of f. When Dgy=0.1 and $=0, a consid-
erable fraction of the flux bypasses the ¢ = 0 barrier and proceeds
via the “indirect” route that combines isomerization (0-motion) with
phenyl ring rotation (¢-motion). This agrees with the results in
Fig. 4 of Ref. [11]. As f increases, the indirect route becomes higher
in energy (see Fig. 2), so most of the flux flows via the direct barrier
crossing route, and the reaction becomes more “one-dimensional”.

In(s(t)-S.)/(1-5.))

-3

0 1, 2 3

Fig. 4

An example of the kinetic analysis of the calculated density distri-
bution by Eq. (7). Open circles represent the density, p(0,4.1),
integrated over the reactants’ region = 026n < 0 < 0.26m,
—12 < ¢ < n/2, for every fifth time step

Fig. 4 shows a typical kinetic analysis by the two-state kinetic ,
model, Eq. (7). We usually exclude from the analysis the first few

time steps, during which the initial distribution reaches quasi-equi-
librium in the reactants’ weli, and very long times for which the
difference S(t) — S, becomes smaller than the numerical accuracy
of our calculation, Occasionally, we found that the decay of S(t) —
S. was not vell represented by a single exponential over the whole
time range. In these cases we used the initial decade of the decay
in the analysis.

1.00
-
c
2
02
£ 0.10}
[}
0 D
(8]
o 0 - =0 (0=0.60)
5 o001} ® — A=t (0=0.87)
bt A - B=10 (a=1.00)
0.1 0 10.0
DOB
Fig. 5

Viscosity dependence of the reaction rate coefficient (Table 1) for
intermediate anisotropy varsations. Lines represent a fit to Eq. (1)
yielding the parameters collected in Table 2

Table 2
Fitting parameters of the ky T = 0.6 data (Table !, Fig. 5) to the fractional
viscosity dependence, Eq. (1)

B 0 1 10
a - 0603 03873 1.000
b 0212 00870 0.0481

Fig. 5 shows the forward rate coefficient, k;, obtained from the
above kinctic analysis, as a function of viscosity, 5 oc Dg,'. Over
the anisotropy range in the diffusion tensor considered in Ref. [11],
namely 0.1 < Dy4/Dgp < 10, we obtain straight lines on a log-log
scale (Fig. 5). The slope of these lines yields the parameter a. The
parameters a and b of Eq. (1) are collected i Table 2. For f# = 0,
we find a = 0.60, in excellent agreement with Ref. [11]. As f is
increased, the indirect path becomes less probable (see Fig. 3) and
a increases smoothly to unity. This qualitatively agrees with the
experimental observation for stilbenes, whose behavior becomes
more Kramers-like when phenyl-ring rotation is restricted e.g., in
“stifl” stilbene [15,16]. As the dynamics become more one-dimen-
sional, the magnitude of the rate coefficients decrease due to the
climination of alternate pathways. We note.that experimental rate
coefficients for stiffened stilbene derivatives are typically larger than
for the unbridged molecule [22]. Within the present model, this is
not a consequence of reduced dimensionality. It could be attributed
[16] to a decrease in the one-dimensional barrier heigth, perhaps
due to electronic interactions with the bridging atoms.

t

icien

1E~1

1E-2

tE-3

rate coeff

1E-1 1 10 100

1000

Fig. 6a

Viscosity dependence over an extended range. Full curves are in-
terpolation by 4'th order polynomials. Dotted line is a fit to the
high viscosity end of the f = 0 data, showing the convergence to
a Kramers behavior in this limit. Data from Table 1

O Q)
081 1, T=0.6
_!.‘- 0.4 =0
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0.2
o
0.0 A o o =
1€-2 1E-1 1 10 100 1000
D—l
88
Fig. 6b

A different representation of the data in Fig. 6a, showing the vis-
cosity dependence of the rate coefficient times the viscosity. Full
curves are the fractional viscosity fit (Fig. 5) utilizing the parameters
from Table 2

In Fig. 6 we have considerably extended the anisotropy range. A
propagation for the largest anisotropy value Dys/Dge = 1000, re-
quired some 100 hrs of Convex time. The results show that, for the
present model, the power law behavior depicted by Eq. (1) actually
represents a transition region between the two asymptotic limits of
large and small anisotropy. In both of these limits one has a Kra-
mers 1,y behavior, though with a different prefacior. This agrees
with Eq. (16) of Ref. [11]. The reason why the dynamics become
effectively one dimensional in these two limits is physically clear:
For large Dy, the density has no time to develop in the orthogonal,

A
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¢.direction. The dynamics then represents direct-over the barrier
¢volution of a-“frozen” (in @) initial distribution. In. the opposite
limit of.small Dy, the initial density rapidly equilibrates in the
‘perpendicular direction. Thereafter, it retains its shape and dimin-
ishes in amplitude, as an.increasing fraction of the population in
the reactants’ region crosses the ridgeline into the products’ region.
The rate-of this process is governed by the magnitude of Dy, at
various ¢ values. Since we have assumed that Dy, scales as 1/ for
all values of ¢, we regain the Kramers behavior in this limit too.
Most of the photoisomerization -experiments [14—22]-have not
explored such huge viscosity variations in the diffusive regime.

keT = 1.0
1.0}

0 - B=0(a=0.89)

rate coefficient

01" o ~ p=1(a=0.94)
A - B=10 (a=1.00)
o1 1.0 10.0
-1
D“
Fig. 7

Viscosity dependence at a higher temperature, Lines are a fit to
Eq.(1)

Returning to more moderate variations in anisotropy, we have
investigated temperature effects on the observed fractional viscosity
behavior, Eq. (1). Fig. 7 shows the viscocity dependence of the
reaction rate for a higher tempcerature, again for the three values
of the stiffness parameter, . As expected, iricreasing temperature
results in increasing reactivity and decreasing selectivity, as depicted
by the increase in the slope, a. The increase in a is more prominent
for smaller g.values. Since increasing T'is equivalent to a scaling-
down of thz potential surface, it leads to a decrease in the variation
of the barrier height along the perpendicular coordinate and hence
to a more Kramers-like behavior {11].

1.0 1.5 2.0 2.5
1/ kgl
Fig. 8
Temperature dependence of the reaction rate coeflicient. Lings are
a fit to the Arrhenius expression, Ink; = — E/kgT + const. The

two numbers next to cach line denote the values of Dy and E,,
respectively

In Ref. [19b] the photoisomerization of trans-stilbene was stud-

ied as a function of temperature in isoviscous alcohols. A depend-
ence of the activation energy, E,, on viscosity was interpreted as a
failure of the fractional viscosity behavior, Eq. (1). It is more ap-
propriate to interpret the observed behavior.as a temperature de-
pendence of a. In Fig. 8 we have rearranged the data of Figs. 6 and
7 to yield Arrhenius plots at different Dy values. To these we have

g=1

[ 10, 2.66

1, 2.42

2.0 2.5

1/keT

Fig. 9
Temperature dependence of the rcaction rate coefficient for a “stiff-
ened” potential surface. See caption of Fig. 8 for details

added data kg T= 04, For large Dy, (small viscosity) the activation
energy is large, since the majority of the reactive flux proceeds
directly over the relatively large barrier pertaining to the @ motion
at ¢ =0, For small Dy, much of the flux goes via the indirect path
which involves lower isomerization barriers, resulting in a consid-
crably smaller activation energy. This behavior is in qualitative
agreement with the experimental data shown in Fig. 3 of Ref. [19b].

The effect of stiffness on the viscosity dependence of the activation
energy is shown in Fig. 9. As obscrved above (see Figs. 5 and 7),
the variation of g with T diminishes as, with increasing stiffness,
a-1, Indeed we find (Fig. 9) that for f=1 the variations in E,
with viscosity are smaller than for 8 = 0. One might say that such
variations [19b] are an indication of truly multidimensional dy-
namics. It is therefore expected that “stiff”-stilbene will show a
viscosity independent E,.

Table 3

Minima analysis on the potential surface of Fig. 2, Eqs. (2)—(3)
Minima A B C D
Relative energy? 0 ~0.20 ~0.504 ~1.52
Coordinates® 0, 0) (0, 0.5) (0.49, 0.5) 049, 0)
Force-constants®  (19.5,7.6)  (39,244) (107, 22.0)  (53.6, 10.0)

9 Energies relative to the origin of the coordinates.
Y 0 and ¢ values in units of radian/n,
9 foo and f44 in units of energy/radian®,

4. A Kinetic Model

In order to qualitatively understand the physics behind
the effects demonstrated in Figs. 5—7, it is instructive to
construct a simple kinetic model. We apply the model to
the case where § =0. The model involves four states, A, B,
C and D, corresponding to the four distinct wells in the
potential surface of Fig. 2. The coordinates (0,¢), energies
and force-constants ( fgp, f54) Of the four states, as evaluated
from the potential surface, Eqs. (2)—(3), are collected in
Table 3. Between the four states one has transitions accord-
ing to the following kinetic scheme

B C

k| ka2 8
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In this scheme state A represents the initial state, A and B
are the reactants while C and D are the products. This
corresponds most closely to the dividing surface employed
in our full calculation, with an absorbing boundary condi-
tion at the product states (C and D). There are two paths
leading from initial state to products: The direct path with
ks =k and the indirect path, involving the intermediate
state B.

The effective rate coefficient for the indirect path, kg,
is evaluated under steady-state conditions, assuming
d[B]/dt =0. This gives

kaks

s 9
kst k_s ©)

kind =

The overall forward rate coefficient for the conversion of A
to products (CuD) is )
ke = ke + Kina - (10
Since k3 and k; will be proportional to Dy, hence to 1/y,

while k; and k_, will.be proportional to Dy, and are hence
constants, the overall viscosity dependence has the form

a [4
kf—m'i'ﬁ (1

with a, b and ¢ constants. This form indeed shows a 1/
behavior in the two extreme limits of — 0 and y-- o0 (cf.
Eq. (16) in Ref. [11]), with a transition region in between.

To evaluate k; from Egs. (9) and (10), we need to know
the rate coefficients for -the various steps in the reaction
scheme, Eq. (8). We estimate these from the one-dimensional
Kramers expression [1] which, in the diffusive regime for
parabolic well and barrier, becomes [13]

2k Thi = (=foo S fosf2e)'? Dy exp[—AV' kg T . (12)

Here f,, and fJ, are the force-constants at the reactants’ well
and the barrier, respectively. Both are evaluated along some
one dimensional coordinate, g(o =0 or ¢ in the present
case). In other words, the potential near the reactants (go)
and transition state (@") is approximated (up to a constant)

as 4 qo(@ — 0o) and 4 /3,(0— 0" respectively. AV' = V(oY)
Table 4

Saddle point analysis on the potential surface of Fig. 2, Eqgs. (2)—(3)
Saddle-point. AD BB BC CD

Relative energy? 3.46 1.99 049 1.23
Coordinates®  (026,0)  (0,0.28) 0.26,0.50)  (0.49, 0.30)

Force-constants®? (—36.8, 2.1) (10.2, ~19.9) (~7.34,29.9) (25.6, —21.2)

# Energies relative to the ongin of the coordnates.

™ 0 and ¢ values in unity of radian, 1 for the saddle-puint located in between
the two indicated wells.

9 fooand fy4 in units of energy/radian?, Negative valug indicates a maximum
in the given direction.

o 2

— V(o) is the classical barrier height along g. f,, and f,
are the corresponding well and barrier force-constants along
the direction ¢ perpendicular to g. Using the data in Tables
3 and 4, one can evaluate the rate coefficients &, i = 1, 2,
—2 and 3, to be used.in Eq. {9). These coefficients were
multiplied by a statistical factor of 2, to account for the fact
that each well in Fig. 2 leads to two equivalent wells, and
collected in Table 5.

Table §
Rate parameters for the reaction scheme in Eq. (8)
Rate coeflicient k|/Doo k:/D¢¢ k..z/DM k,/Dga
Transition A—D A—B B—A B—-»C
Magnitude 0.0846 0.326 0.808 0.812

-log D

10 08

Fig. 10

Viscosity dependence of the reaction rate coefficient as calculated
from the kinetic model, Eqs. (9) and (10). The overall rate coefficient
(full curve) is the sum of the contributions from the direct and
indirect pathways (dashed curves). Circles denote results from exact
propagation, Table 1

The outcome of the kinetic approximation is shown in
Fig. 10. While the direct rate coefficient is a straight line on
alog-log plot, the indirect rate coefficient is constant at small
viscosities and Kramers-like at large viscosities, see Eq. (11).
When these two curves intersect, they give rise to the full
curve, which shows the above mentioned transition between
the two asymptotic limits. In simple chemical language, in-
creasing viscosity induces a change of mechanism, from a
direct to an indirect pathway. As the stiffness, f, is increased,
the direct pathway dominates: The curve for k;,4 drops until
eventually is does not intersect the kg, curve at all. Hence
as f— oo we get that k— kg, with a pure Kramers behavior
over the whole viscosity range.

5. Conclusion

We have extended the two dimensional diffusive barrier
crossing model of Agmon and Koslofl [11] in several direc-
tions, with the following conclusions:

(@) Over an extended anisotropy range in the diffusion
tensor, the rate coefficient shows a Kramers-like behavior
in the two extreme limits with a trangition region, which
can be described by a fractional viscosity dependence,
Eq. (1).
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(b) As the stiffness-of*ilie potential in the perpendicular
coordinate is increased, the transition region decreases until
the dynamics become Kramers:like over the whole aniso-
tropy range.

{c) In the regime where two dimensional dynamics is im-
portant, the power a in Eq. (1) increases with temperature.
This is manifested by an Arrhenius activation energy which
varies with anisotropy. As the stiffness of the potential in-
creases, this temperature effect diminishes.

(d) A simple kinetic scheme, employing four states with
‘transition rates evaluated from the two dimensional poten-
tial surface by the one-dimensional Kramers expression,
produces a qualitatively good agreement with the exact so-
lution of the two-dimensional Smoluchowski equation.
Within this framework, the observed behavior is a conse-
quence of a viscosity dependent change in mechanism.

It is interesting to note that, for anisotropy, Dg4/Dog,
which is proportional to the macroscopic viscosity, all of
the above conclusions are borne out by photochemical
isomerization experiments:

(a) Experimental rate coefficients conform to fractional
viscosity dependences over a limited viscosity range
[15-17].

(b) “Stiff"-stilbene shows a 1/n viscosity dependence, as
opposed to stilbene which shows the fractional viscosity de-
pendence [15,16].

(c)'Stilbene has a viscosity dependent activation energy
for its isomerization, the larger the viscosity the smaller the
activation energy [19b].

(d) Isomerization of substituted stilbenes can be inter-
preted [22] with the aid of kinetic schemes which are similar
to Eq. (8).

Although this qualitative agreement between model and
experiment does not necessarily imply that the model is the
correct description of experiment, it will be interesting to
check its predictions experimentally. For example, one could
check whether the activation energy for isomerization of
“stiff” stilbene is viscosity independent. It would also be
interesting to initiate measurements at extremely high vis-
cosities in an effort to determine the asymptotic form of the
viscosity dependence.

We thank Ronnie Kosloff, Abraham Nitzan and Wolfgang Rettig
for fruitful discussions. Work supported by grant numer 86-00197
from the US-Israel Binational Science Foundation (BSF), Jerusa-
lem, Isracl. The Fritz Haber Research Center is supported by the
Minerva Gesellschaft fiir dic Forschung, Munich, FRG.
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Rate Processes in Low Dimensional Chaotic Systems with Many Attractors

E. T. Arecchi
Phys. Dept. of the University and Istituto Nazionale di Ottica. Firenze

Chaotic Dynamics | Nonequilibrium Phenomena [ Nonlinear Phenomena

Kramers' paper and its successive claborations up to the last decade have considered the transition rate
between two stable situations. In the language of system dynamics, we say that the process consists in the
transition between the basins of attraction of two fixed point attractors, — Here 1 present four situations
of transitions in non equilibrium systems explored experimentally, and which await a formal treatment
in terms of a generalized Kramers transition rate theory.

1) Since 1967, with reference to Q-switched lasers, we have studied the decay out of an unsteble state,
exploring the passage time statistics in its first and higher order moments,

II) In thé *80s we have been exploring situations of low dimensional chaos where two or more strange
attractors coexist. The jumps from one to another are either noise induced jumps, or they are induced by
a change in a control parameter which lowers the energy barrier scparating the two attractors (crises).
I1I) Investigating a dynamlcs with competing unstable points we have shown evidence of Shil'nikov chaos.
The identification is done in terms of the iteration map of the successive return times to a given surface
of section. This may be considered as an extension of the passage time method to the case of multiple
passages.

1V) We have given experimental evidence of “chaotic itinerancy”, that is, of jump processes self triggered
by the same dynamics, So far, the corresponding understanding is based only on numerical simulations,
Since chaotic itinerancy has been observed in optical systems displaying space-time chaos, a short survey

of these phenomena is presented for sake of completeness.

1, Introduction

At variance with the other contributions of this Discus-
sion meeting, I do not present the calculations for an already
established rate process, but rather I introduce novel rate
processes whose theoretical understanding required a gen-
eralization of Kramers’ approach.

Precisely I present four situations of transitions in non-
equilibrium systems which have been explored experimen-
tally by my research group, and which await a formal treat-
ment in terms of a generalized Kramers transition rate the-
ory.

I) Since 1967, with reference to Q-switched lasers, we have
studied the decay out of an unstable state, exploring the
passage time statistics in its {irst and higher order moments.
This investigation is reviewed in Sec, 2,

II) In the '80s we have been exploring situations of low
dimensional chaos where two or more strange attractors
coexist. The jumps from one to another are either noise
induced jumps, or they are induced by a change in a control
parameter which lowers the energy barrier separating the
two attractors (crises).

In both cases the power spectrum has a low freuency part
(jump spectrum) independent from the chaotic spectrum
which accounts for the decay of correlations within a single
attractor. This is discussed in Sec. 3.,

IH) Investigating a dynamics with competing unstable
points we have shown evidence of homoclinic and hetero-
chinic orbits and Shil'mkov chaos. The identification is done
in terms of the iteration map of the successive returne times
to a given surface of section. This may be considered as an
extension of the passage time method 1o the case of multiple
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passages. Shil'nikov chaos and'its representation in terms
of time maps is discussed in Sec. 4.

1V) Sec. 6 is devoted to describe the recent experimental
evidence of “chaotic itinerancy”, that is, .of jump processes
self triggered by the same dynamics, without external noise
or parameter modulation, So far, the corresponding theo-
retical understanding is based only on numerical simula-
tions. Sine¢ chaotic itinerancy has been observed in optical
systems-displaying space-time chaos, a short survey of these
phenomena is presented for sake of completeness in Sec. 5.

What is common to cases II to IV, is that they refer to
cases of deterministic chaos in dissipative systems, charac-
terized by two features, namely, i) the dynamics is low-di-
mensional, that is, the corresponding attractors can be em-
bedded in low-dimensional (d < 10) phase space and ii) many
attractors coexist for the same parameter values.

Feature i) means that the system can be modelled by a
small number of non-linearly coupled O.D.E’s (ordinary
differential equations). Even if the physics refers to a dis-
tributed ficld ruled by P.D.E’s (partial differential equa-
tions), that means that the relevant motion can be confined
to low-dimensional manifolds. Feature ii) means that re-
peated preparations of the physical system do not lead to
the same attractor, since in general an ensemble of initial
conditions is spread over many basins of attraction. As said
in Sec 3, even in the evolution from a {ixed initial condition,
the trajectory can belong successively to different attractors,
either because activation by external noise has violated the
uniqueness theorem, allowing a jump across a basin bound-
ary, or because external modulation of a control parameter
has induced a “crisis” whereby the attractor hits the basin

0005-9621,91,0303-0236 § 3.50 + 25/0
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boundary and can go across it without an activation (this
would be the equivalent of barrier-less transitions):

A new phenomenon, recently introduced theoretically and

‘just observed is that of “chaotic itinerancy”. It consists in
‘the successivevisit of different slow manifolds with a chaotic
dynamics within each of them, persisting for a time much
longer than the transition time from one to another. This
stems form the interplay of a rather small number of degrees
of freedom, without any added noise.

In conclusion this communication addresses the question
whether a suitable extension of Kramers’ theory might yield
the transition rates from one to another slow manifold and
the persistence time within each of them.

Due to the novelty of the phenomena here reported and
to the lack of a formalized, Kramers type, rate treatment,
the presentation is rather sketchy and introductory. I sin-
cerely hope that it will stimulate the theoretical investiga-
tion,

2. Rate Processes in Optical Non-equilibrium Systems

In Sec. XI of their comprehensive review on “Reaction
rate theory”, Hinggi. Talkner and Borkovec [1] devote a
short remark to rate theory in non-equilibrium systems, and
particularly to mean first passage time in the decay of ini-
tially unstable states. Motivated by my old time acquain-
tance with such a problem [2], in the late seventies I ad-
dressed the problem of rate processes in terms of first pas-
sage time statistics, extending the acquisition not only to
the mean, but also to higher order moments [3,4]. Such a
tool was applied by my group to electronic nonlinear circuits
[4] and later used to explore transitions in class A lasers
[5] by Roy et al. [6] and then by Mecozzi et al to semi-
conductor lasers [7] and by my group to CO, lasers [8]. In
these two latter cases, dealing with class B lasers, the cor-
responding dynamics was no longer simply modeled as a
one dimensional motion within a potential well.

Let-me summarize the main results,

The first observation of a statistical spread in the leading
edge of a Q-switched laser pulse was associated with the
appearence of a large peak in the variance of the transient
photon distribution [2]. This fact was explained in terms of
an approximately deterministic decay out of macroscopic
unstable state, to be averaged over the statistical distribution
of the initial states. Such behavior was later shown to be
peculiar of quenching phenomena in macroscopic systems,
such as spinodal decomposition in thermodynamic systems
9.

As stressed by Haake [10], the phnomenon is the tran-
sient counterpart of the stationary fluctuations at the critical
point of a thermodynamic phase transition (or more gen-
erally at the bifurcation points in a nonlinear dynamics
which display the same formal features of asecond-order
phase transition). Precisely, if we call N the number of de-
grees of freedom of a macroscopic system decaying out of
an unstable state, the initial fluctuations are of the order of
1/N[0(1/N)], however, in the linear part of the decay they
aré amplified by 0(¥), hence the relative fluctuations are of
o). -

-
RO

The assumption of deterministic evolution out of a spread
initial state neglected the role of fluctuations along the build
up with respect to the initial ones. The relation between the
two types of noise were explored in a series of papers by
Suzuki, summarized at the XVII Solvay Conference on
Physics [11a]. In that conference, a remark by P. Martin
to Arecchi [11b] reopened the question of the nature .of
these large fluctuations.

Upon Martin’s remark a quest for a discrimination be-
tween fluctuations on the initial condition and those along
the path led a new observation method, based on the sta-
tistics of passage times at a given threshold [3,4]. From this
method it resulted clearly that, when a laser is suddenly
switched far above threshold, the fluctuations are mainly
due to the initial spread, as already guessed in Ref. [2]. This
method of passage time provided an important difference
between gas and dye lasers, since in the latter case it per-
mitted detection of the role of pump fluctuations as “noise
along the path” [6].

Both the He—Ne and the dye laser have in common a
population decay rate large with respect to the photon decay
rate (so called class-A lasers [5]). Hence the population ad-
iabatically follows the intensity changes, with a consequent
reduction of inversion as the cavity losses are lowered. This
adiabatic following forbids any overshoot in the laser inten-
sity. Indeed,-Q-swilching-in-class-A lasers is characterized
by an intensity monotonically increasing up to an asymp-
totic value. In contrast, when the population decay is lower
than the photon decay (class-B lasers) the initially large pop-
ulation storage provides a large intensity pulse by stimulated
emission, and only later the population feels the slower de-
pletion channels (either spontaneous emission in ruby and
semiconductors, or collisional deexcitations in CQ,), This
explains why, after a sudden loss reduction, class-B lasers
release giant intensity pulses well above the asymptotic
value, whereas class-A lasers do not.

We generate transient dynamics in a single-mode CO,
laser by switching an intracavity modulator from absorption
to transparency in a time shorter than the build up time of
the giant pulse. We summarize below the main results [8].

(i) The average buildup time is around 3 ps. The average
spread of the 8¢ leading front (jitter) is around 0.2 ps.

(i) If we consider the time ¢, necessary to reach a photon
number n, still below the saturation value n;, the laser dy-
namics up to ¢, can be taken as linear. In this linear regime,
a simplified version of pasage time statistics leads to a very
powerful relation which permits evaluation of the effective
seeding photon number at the onset of the dynamics in terms
of the threshold photon number n, and of the ratio of the
average I, the spread 5t. Our method [8] is self-calibrating,
in the sense that the second moment of the observed statis-
tics provides the amplification gain without any previous
calibration, and the higher-order cumulants provide the er-
ror bars of the experimental points.

(iii) We can detect a few initial photons in a laser cavity
b linear optical amplification. The reported amphfication
factors are of the order of 10%, but in principle they could
be larger. The linearity of the amplification process is pre-
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served-up-to the saturation photon ntifiiber; which-is- over
11 decades ‘in.our case.

(iv): While ina class-A laser the photon populatlon reaches
.a maximum and remains.clamped to that value, in a-class-
B laser the: photon-popuilation inversion is practically:de-
.coupled from its thermal reservoir, dnd its evolution depends
only on'the coupling with the radiation“field.

3.'Chaos. with Many Attractors:: Noise Induced. Jumps and

Crises
3a..Noise Induced Jumps and 1/f Spectra

In the-pioneering work on chaos in a single mode laser
[12] we show that modulating the losses of a class B, ruled
by two equations, at a-frequency close to a nonlinear res-
onance intrinsic of the system (around 60 kHz) chaos is
reached via a sub-harmonic route.

Furthermore at f = 63.85 kHz a new feature appears,
namely the coexistence of two independent stable attractors,
one of period 4 (f/4) and the other of period 3 (f/3) (Fig. 1).
This bistable situation has nothing to do with the common
optical bistability where to dc output amplitude values ap-
-pear for.a single dc driving amplitude. We call this coexis-
tence of two attractors“‘generalized bistability”, More gen-
erally, 1/f type low-frequency spectra, that is, power spectra
as/~*(« = 0.6—1.2), appear when the following conditions
are fulfilled: (i) There are at least two .basins of attraction;
(ii) the attractors have become strange and any random
noise (always present in a macroscopic system) acts as a
bridge, triggering jumps between them. These jumps have
the f feature. In the region of bistability (see Fig. 1) we have
.increased the modulation amplitude up to the. point where
the two attractors have become strange. Fig. 2 shows the
sudden increase in the low-frequency spectrum. The diver-
gent part has a power-law behavior f~* with « 2 0.6.

Let us show how addition of random noise in a nonlinear
dynamical system with more than one attractor may lead
to 1/f spectra, provided that the basin boundary be fractal.
This shows that combining the features leading to deter-
ministic chaos with a random noise is somewhat equivalent
to a double randomness and we call “hyperchaos” such a
situation. Indeed random-random walks in ordinary space,

f
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Fig. 1

Modulated CO, laser: power spectra and phase portrait (i, n) where
n is the photon number. f = 63.85 kHz. Experimental evidence of
generalized multistability (coexistence of two independent attrac-
tors). The power spectrum shows that those attractors corrcspond
to f73 and f/4 subharmonic bifurcations, respectively; in phase space
we see independent loop. The multiple winding {corresponding to
peniod 3 and 4, respectively) 1s masked by the particular projection.
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Fig. 2

Experimental power spectra in.the case of two attractors, without
noise (dashed line), and with noise (solid line). Notice that this low
frequency range is two decades below the high frequency spectra
of Fig. 1. The solid spectrum (noise activated) shows a power law
component from 20 to 40 dB above the dashed (jump free) spectrum

as diffusion in disordered systems, have shown a 1/f behav-
ior [13]. Thus, hyperchaos here intiroduced is a random-
random walk in phase space, where in fact one of the two
sources of complex behavior is due to the fractal structure
arising from deterministic dynamics.

To evaluate the impact of the following arguments, we
premise some historical remarks on 1/f spectra in nonlinear
dynamics.

Some years ago we discovered [14] that in a nonlinear
dynamical system .with more than one attractor, introduc-
tion of random noise induces a hopping between different
basins of attraction, giving rise to a low frequency spectral
divergence, resembling the 1/f noise well known in many
areas of physics, Such a discovery was confirmed ‘by the
laser experiment implying two coexisting attractors already
reported and later the effect was observed in other areas as
e.g., Josephson tunnel junctions [15].

The effect was questioned with two objections:

a) a noise induced jump across a boundary leads to a
telegraph signal, hence to a single Lorentzian spectrum
[16a].

b) a computer experiment yielded a power law only over
a limited spectral range [16b].

The questions were answered [16¢] with a statement of
the empirical conditions under which the 1/f spectra ap-
peared, namely:

(i) coexistence of a least two attractors,
(ii) presence of noise,
(iii) some “strangeness” in the attractors.

As a matter of fact this third condition was rather vague.
To make it more precise, two theoretical models were ex-
plored, namely, a one dimensional cubic iteration map with
noise [17] and a forced-Duffing equation with noise [18].

The numerical evaluation of Ref. [18] showed that for
some control parameters the boundary between basins of
attraction was an intricated set of points, through which it
was impossible to draw a simple line. In such cases the noise
was most effective in yielding low frequency spectra 1/f-like.

On the other hand a fundamental logical approach to the
1/f problem was based on the composition of a large number
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-of Lorentzians (or-elementary Markov-processes' with ex-
v .ponéntial decay) whose weights are log-normally distributed

[19], thus; fulﬁlhng the relation

1
o +72 p(y) dy = cost, X-Zo— )

91 € © <€ 7, Thus,.this suggested that the boundary-struc-
ture was the real responsible for a large number of decay
constants (possibly log-normally distributed),

In the meantime, the fractal, structure of a basin boundary
for.chaotic dynamics was investigated [20]. This means the
following. As the phase point-wanders within one basin of
attraction, if. we draw a sphere around the point defining its
distance from the other basin of attraction, the radii of these
spheres are distributed with all scale lengths, according to
the self similar structure of the fractal boundary.

Based on the above considerations, we have built an el-
ementary model for the motion of the phase point within.a
fractal basin boundary under the presence of random noise
[21]. We model the boundary region of two basins of at-
traction A and'B as two adjacent one-dimensional lattices
of sites. Supposé we start from site /. At each discrete time
step, il { belongs to A (i = i)) it moves one step forward on
the same lattice [y — (ia + 1)] and if it belongs to B it goes
one step beckward [iy — (is — 1)]. In the absence of noise,
one the motion has started on one basin, it will remain on
it forever, In the presence of noise, at each time step there
is a finite probability of a “cross” jump at the same lattice
site, from stripe A to B: iy — ip.

We call L the maximum size of the boundary region (dis-
1ance between the two lattices A, B) andfj < L any of the
possible sizes of the fractal set. At each time step, the prob-
abilities of permanence and jump are respectively

Pyp Py = /L
PABPBA = 1—’1/.[‘.

@

To build a self-similar structure we allow ;, to sacale as I,/
L = (1/2)"® where V(i) is a natural number sorted ran-
domly for each site (i = —c0 to c0, k = A, B). To deal with
a real numerical experiment we consider finite sequences of
N sites (e.g, N = 10%) and we truncate the iractality by
imposing 0 < V(i) <F. Here, Fis a finite \.teger denoting

‘the maximum partitioning (1/2)° -, that is, the ultimate res-

olu. >n of the measuring device in appreacing the fractal
structure of our set. With all this in mind, for each evelution
we extract a double sequence of N integers randomly dis-
tributed between 0 and F— 1, and denote each site i, by.the
corresponding number V(i;). This means that we have at-
tributed to each site an “area of respect”, that is, a specific
separation [, from the other attractor, with I, depending on
V(i) as shown above. We start, e.g. on the basin A from i,
= NJ2.

At. this step, to account for a suitable noise yielding the
permanence and jump probabilities (2), we generate a ran-

dom number y uniformly -distributed between 0 and 1. If
9 < (1/2)V® then at.the next time theé point goes to iy + 1
on-attractor A; if y > (1/2)¥™, then the point jumps in-
stantaneously to site iy and at the next time it.goes to iy — 1
on:attractor B,

By measuring the position coordinate, taking the.Fourier
transform and squaring.it, we can build the power-spectra,
that is,.the transforins of the position correlation functions.
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Fig. 3

Deterministic motion on two one dimensional lattices with random
mutual separations and each site, at with possible noise induced
Jjumps. Power spectra (vertical) vs. frequency (horizontal) in log-log
scale. Wavy lines: ineasured spectra, straight lines: best fits, whose
slopes a are 1.7 (F = 4), and 1.1 (F = 14)

In Fig. 3 we show two power spectra for F = 4, and 14
respectively. In fact, we have measured spectra for all integer
values of Fbetween 4 and 14, but we just report two samples
over slightly more than three frequency decades. The se-
quence shows that, as the fractality increases, the slope of
the log-log plot goes from about 2 (single Lorentzian) to
about 1 (1/f spectrum). The Lorentzian (x = 2) of the ran-
dom telegraph model is easily recovered for F = 1. thus
showing that noise induced jumps across a regular line
boundary fulfill the intuitive expectation of a single decay
rate. An analogy with the random-random walk [13] is eas-
ily drawn. Indeed our mouon is bound with an r.m.s. de-
viation going from about |, Tto lloml as the fractality F
increases from 4 to 14, according to Sinai.
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3b). Spontaneous Inter-attractor Transitions (Crises)

" In nonlinear dynamics it is generally possible to ‘have
collisions betwegri unstable-orbits .and' chaotic attractors,
‘leading to interior; boundary -and external crises [22,23].
The formier one preserves the chaotic attractor enlarging
monotonically its basin, the second one destroys the attrac-
tor by sweeping off its basin of attraction, while the latter

oné enlarges discontinuously its basin of attraction. The-

presence of those different crises in the system depend on
the amount of-dissipation [22]. Such crises have been ob-
served experimentally in a variety of systems [24]. Boundary
crises in the modulated laser have been observed by Glo-
rieux et al, [25].

Working on the modulated CO, laser [12] we have given
experimental evidence of the three types of crises which are
due to collisions among strange attractors and unstable pe-
riodic orbits created-1n saddle node bifurcations [26]. These
collisions are also responsible for the existence of isles that
can be reached only by hard mode excitation and for peri-
odic windows that separate different regions.

Furthermore, from the shape and size of the multistable
region as a function of the modulation amplitude, m, we
draw a connection between the amount of attractor overlap
" in parameter space and the volume contraction rate in phase
space, that is, the dissipativity of a dynamical system,

4, Shil'nikov Chaos: How to Characterize Homoclinic and
Heteroclinic Behavior by Return Time Maps

Shil'nikov.dynamics [27] corresponds to orbits asymp-
~ totic to an unstable saddle focus in at least a 3D space.
Limiting to a 3D space let us call a 4 iw the pair of complex
eigenvalues on the stable (x < 0) manilold and y >0 the
eigenvalue in the unstable direction orthogonal to the plane.
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Fig 4
Schematic representation of a trajectory in Shil'nikov dynamics

Let us consider a dynamics where all fixed points are
unstable, within a given range of control parameters. We
call such situation a regime of competing instabilities [28].
In physical implementations we can adjust [29] the control

Z, =1

parameter in order to isolate a non zero-set of initial con-
ditions such that. ... ~ajectories departing from theré ap-
proach asymptotiéa..,'the unstable saddle focus and remain
at a finite distance from all other fixed points. In such'a
case, under the Shil’nikov condition [27]

lo/y] < 1 ®)

the motion becomes chaotic,

A single orbit of this type spiralling around an unstable
saddle focus S is qualitatively sketched in Fig. 4.

With the understanding that the only interesting dynam-
ical features occur around point S we obtain a global de-
scription by just studying the linearized dynamics within a
small box around S (Fig. 5).

’-\
PR
\
1 \\
n W
[}
o %
ol \
1 \
L {
Zun h
[ I
,l h
,I A1
N h
] ]
' |
1 ll

’ LI 1 -/ -
/ / X
/ I /
\‘, '.;,
’ "‘«.—---’ 7

/
Y

h A

Fig. 5
Construction of unit box leading to the unidimensional map (6)
through the lincarization of the flow around the saddle focus

In Fig. 5, we orient the three axes along the eigenvectors
with x —y coinciding with the stable plane and z being the
expanding direction. We take the n plane (vertical plane of
equation x = 1 containing a face of the cube) as the Poinaré
section and we calculate the return map for the coordinate
2, Startingat t = 0O at z = 0 on x = 1 (y is irrelevant for
the following considerations) the phase point leaves the up-
per cube side z = 1 at time 7 such that

1= Zoe‘ﬁ

from which it results

T=- %logzo. G
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The horizontal coordinate x evolves over the same time as

x(7) =.e~* cosyr _ (5).

since the -initial condition is x(0) = 1. Neglecting a-phase
‘shift due to the y position, we constrain the motion external
to the.box to a rigid translution (see dashed trajectories).

y@) =z

Jbesides an offset ¢ added at each turn and which may be
considered as a second control parameter, the first one being
the ratio |a/y|. Using relation (4) and writing z as z,.,.; and
2 as z, we obtain the return map

Zogy = 27 coOS (% logz,,> + g (6)

which describes the homoclinic orbits.

The map (6), even though representing a sensible global
description, may provide a poor experimental criterion
whenever the z coordinates on the 7 plane are clustered in
a small region. A lack of experimental sensitivity appears in
experimental return maps which do not display the nice
features that Eq. (6) provides for the theory. Such was the
case for the Belouzov Zabotinski reaction {3]. On the other
hand, the above behavior appears rather universal whenever
one can isolate a spiral type orbit, as it occurs in Lorenz or
Roessler chaos [31].

In dealing with a quantum optical experiment we intro-
duced a more sensitive dynamical indicator [32,33]. Based
on the logarithmic relation between position z on the n plane
and times 7 that the orbits take to return to that plane, and
assuming that the relevant time is that spent in‘the box of
Fig. 5, map (6) transforms via relation (4) into a return map

for orbital times, We rescale 7 as T = y7 = —logz and
obtain
Tyr = —In[exp(~4/yT;) cos(w/yT,) + e 0

—In[¢(Ty+¢£].

Comparison of Eqs. (6) and (7) shows the enhanced sensi-
tivity to fluctuations of the 7" map with respect to the z map.
Indeed, suppose that the offset £ from homoclinicity is af-
fected by a small amount of noise. The sensitivies of the two
maps to such a noise are given, respectively, by 0z/0¢ = 1
and

0T/oe = [¢(T) +¢€1~" . ®)

This sensitivity factor acts as a level arm whenever ¢(T) + ¢
becomes very small. Note the following: (1) This is not de-
terministic chaos; in fact, large fluctuations can be expected
even for a regular dynamics, implying a fixed point T*, (2)
It is not associated with the homoclinicity condition ¢ = 0;
in fact, for finite ¢ there may be a T* such that ¢(7%) +¢=0.

Since a homoclinic orbit is the dynamic counterpart of
repeated decays out of an unstable state, the result is like

repositioning the initial condition in an experiment on a
single decay. Here the repetition is automatically provided
by the contracting motion asymptotic to the stable manifold.
As a consequence, superposed upon the deterministic dy-
namics (either regular or chaotic), the high sensitivity
(Eq. (8)) may provide a broadening of the T maps not de-
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Numerical iteration maps Shil'nikov chaos. Parameter values: o/
y=13.0, afy = 0986, ¢ = 0.01. {a) and (b), T maps without and
with noise 8¢ = 10 ?, respectively. (c) Stable fixed point of the
regular dynamics, broadened by a noise 8¢ = 10 °
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{éctable in:the z maps-whenevernoise in theoffset ¢ is pres-
ent,

I fact, the model description ¥ = F(x) of a large system
in:térms of'a low- dimensional dynamic variable-x.is just an
ensenible-averaged description, and residual fluctuations on
position .x must be considered at some initial time, even
though the successive evolution is accounted for by a de-
terministic law. In our case such a fluctuation is a stochastic
spread-8¢ on-the offset ¢ of the position z

As shown in Fig. 6, the same amount of 8¢ in Egs. (6) and
(7) leaves the z maps unaltered, while it strongly affects the
T maps. If we specialize the map parametcrs o9 o and ¢
to a regular orbit (fixed points both in z and. T spaces),
introduction of 8¢ does not broaden the z point, while the
T point broadens.

For example, the values afy = 0.98, and ¢ = 0.01 yield
one fixed point T* = 5327, with a sensitivity §7*/6¢ =
182 (Fig. 6 (c)), Note that the noise effect reported here has
nothing to with additive noise effects on return maps [34].
Indeed, the latter effects refer to the scaling behavior near
stationary bifurcations, whereas our data refer to transient
fluctuation enhancement, and they do not leave a permanent
mark (such-as an orbital shift.or broadening).

Thus, while Shil'nikov chaos is a deterministic effect de-
scribed on average by the backbone of the z or 7' maps, the
superposed thickening is a noise effect peculiar to 7" maps
undetectable in z maps. This new effect is a specific indicator
of intrinsic fluctuations, and it permits a demarcation line
to be drawn between a real-life experiment and a model
simulation, from which this second feature is absent,

In order to explore the regular behavior of these closed
orbits, we take the fixed point of map (7).

T* = In[exp(—A/yT*) cos(w/yT*) +¢] . '(9)

Eq. (9) gives a stable fixed point, provided Shil'nikov con-
dition is violated. Solving transcendental Eq. (9) and plotting
the Poincaré frequency 1/T versus the control parameter &,
yields two different items, namely

i} a staircase region implying histeresis cycles

ii) a logarithmic divergence for small ¢

After having summarized the main features of Shil'nikov
chaos we describe the corresponding experiments. As a mat-
ter of fact, things have gone in the reverse order: we first
found evidence of spiral type orbits, including large time
fluctuations, or regular periods scaling with the control pa-
rameter as i), i) above; then we looked in the theoretical
literature and found that, using the orbital period as a dy-
namical indicator more sensitive than Poincaré position, we
could nicely describe what had been previously treated only
at a qualitative level, in terms of a symbolic dynamics coding
the number of spirals around the saddle focus [30].

Our experimental setup consists of a single mode CO,
laser with an intracavity electro-optic modulator. A signal
proportional to the laser output intensity is sent back to the
electro-optic modulator [35]. Single mode CO, lasers have
a dynamic behavior described by two coupled differential
equations, one for the ficld amplitude and the order for the
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Fig. 7
Schematic view of a trajectory in the phase space when the dynam-
ics is affected by all three unstable stationary points.

population invérsion, the fast polarization being adiabati-
cally climinated from-the complete set of Maxwell-Bloch
equations. Thus, the presence of feedback introduces a third
degree of freedom. With suitable normalizations such a sys-
tem is described by three first-order differential equations
for the laser intensity x(¢), the population inversion y(t), and
the modulation voltage z(¢t). Keeping all other parameters
fixed, the dynamics is controlled by varying a bias voltage
B in the feedback loop. In Fig. 7 we present a schematic
view of the trajectory in the three-dimensional space, ob-
tained by a linear stability analysis of the motion around
the stationary points, and qualitative connections between
the linear manifolds (dashed lines).

From an experimental point of view we are able to vi-
sualize (x — z) phase-space projections, obtained by feeding
onto a scope the photodetector signal proportional to the
laser output intensity x(¢) and the feedback voltage z(¢). This
phase-space projection consists of closed orbits visiting suc-
cessively the neighborhoods of the three unstable stationary
points 0, 1, and 2.

The local chaos around point 1, established at the end of
a subharmonic sequence, has been characterized by stan-
dard methods as power spectra and correlation dimension
measurements [35]. The competition of the three instabili-
ties in controlling the global features of the motion was
described in Ref. [29]. There |o;7| was adjusted major then
one showing regular behavior and experimental evidence of
items 1) and ii) above. Here we adjust the control parameters
in order to have a dominance of the saddle focus, so that
the motion consits of a quasi homoclinic orbit asymptotic
to it.

In Fig. 8 we report experimental plots of the laser intensity
vs. time for two slightly different conditions. Fig. 8b) shows
¢clear evidence of a humodlinic orbit in the two long tran-
sients, which provide 4 lengthy permanence in a phase space
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région of almost constant intensity. This appcars: more
clearly in- the cofresponding phase space projections (Fig. 9

: and, b)) For comparison:we give in Fig. 9c) a photographic

exposure (over 1 s) of 30000 orbits:as that of Fig. 9a), to
show the stablllty of shape
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Time plots of the laser intensity in the regime of Shil'nikov chaos.
a) and b) refer to two different gains of the feedback:loop. b) shows
two long transients corresponding to a large number of small spirals
ayound the saddle focus

Before we discuss comparison with Shil'nikov theory, a
crucial question arises: how much of the spread in the return
times has to be attributed to point 2 or 0? Indeed, we have
quasi-heteroclinic orbits visiting the surroundings of the two
unstable points 2 and 0. But in our experimental situation
the dynamics can be assimilated to a quasi-homoclinic orbit
around point 2, which is thus mainly responsible for the
spread in return times. This is easily proved my measuring
the spread T in the residence times 7; around 0 (zero inten-
sity stripes) and the spread 7T in the residence times T
around 2 (complementary stripes, such that Ty 75 is the
total orbital time), In Fig. 8, which shows typical time se-
quences used to build the two averaged relative spreads are
approximately

feedback voltage

feedback voltage

(ATo)/(To) ~ 14%, (ATH/(T;) ~ 80%,
(AT)/(To) ~ 40%, (AT)/T) ~ 250%.

The comparison: shows that point 0 introduces a pertur-
bation around 14% with respect to pure homoclinicity, that
is, the orbital regularity is ruled mainly by point 2. Thus a
theoretical approach to our experiment in terms of homo-
«clinic chaos appears-justified.

We measure-the time spacings by setting a threshold cir-
-cuit near the top of the largest peak of the intensity signal,
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Experimental iteration maps of the return times. a) refers to Fig, 8a),
b) shows the maps corresponding to regular periodic situations,
namely, 1) an clectronic oscillator, 2) the laser in a regular periodic
regime and 3) the laser just at the onset of the instability but still
with a regular period
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parameters of Fig. 8a) and b), respectively. ¢) is the superposition of 30000 orbits of type a)
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4,
" A-fime-to-amplitude convérted (TAC) yields the sequence T;
of successive time spacings, which is then-classified as a
statistical distribution by a multichannel pulse height ana-
‘lyseér, orstored in.a digitizer, so that correlation functions
or itefation maps can be sorted out.

The statistical distribution of return times is a broad fea-
tureless curve which does not offer curves-on the ordering
of T;. On the contrary, the iteration map (T; ..., vs. T;) displays
a regular structure (Fig. 10a)). To check whether we are in
the presence of one-dimensional (1D) iteration map, and the
remaining thickness is due to the observation technique, or
the map is more that 1D, we report in Fig. 10b) the iteration
maps corresponding to three regular situations.

In the absence of fluctuations in T they should be point-
like (the image of a stable fixed point). In fact 1) corresponds
to an electronic oscillator and it just shows the resolution
of the TAC, 2) corresponds to the laser in a regular periodic
regime-away from the Shil'nikov instability, ‘and 3) corre-
sponds to the laser on the verge of the instability but still
with a regular. period, In this last case, the fluctuation as-
sociated with the nearby transition shows that, even without
chaos in the return time, the close approach to an instability
point introduces a fluctuation enhancement, which has no
theoretical counterpart.in-the current treatment of deter-
ministic chaos. To deal with this broadening, the dynamical
equations should include a statistical spread in the injection
coordinate at the Poincaré section near the saddle focus, to
account for the macroscopic character of the experimental
system. As it was shown in Refs, [2,3], even though this
spread has no relevance on the average dynamics, it con-
tributes a large transient fluctuation whenever the system
decays from an unstable point.

5. Space Complexity in Nonlinear Opfics

In chemical relations and in fluids it is straightforward to
scale up the system size from small to large cells, thus mak-
ing it possible to explore in many ways the passage from
systems coherent {fully correlated) in space to systems made
up of many uncorrelated, or weakly correlated, domains.

Crucial questions such as; i) the passage from order to
chaos within a single domain and ii} possible synchroniza-
tions of time behaviors at different space domains, have been
addressed in the past years, with the general idea in mind
that space-time organization is what makes a large scale
object complex.

Thus far, such an investigation was not possible in the
optical field, because all coherent optics is based on Schaw-
low-Townes original idea of a drastic mode selection.

HereIshow very recent evidence of space-time complexity
in optics. The experimental configurations which have made
possible to fulfill this twenty-year long search appear so
promising that we can foresee an extensive investigation of
space phenomena in optics along the coming decade. Let
me call this area of investigation “dry hydrodynamics”.

Here I anticipate and explain what we are going to see in
the experiments reported in Sec. 6. To appreciate the role
of space coupling let me summarize the present status of

affairs in quantum-optics. Since all coherent phenomena
take place in a cavity mainly extended in a z-direction (as
¢.g. the Fabry-Perot cavity), we expand the field e(r;z), which
obeys the wave equation:

D’e = —up 10)
(wherg p(r,t) is the induced polarization), as .
. eln) = E(xp.z,) ek, (11)

If the longitudinal variations are mainly accounted for by
the plane wave, then we can take the envelope E as slowly
varying in«t and z with respect to the variation rates  and
k in the plane wave exponential. Furthermore we cll P the
projection of p on the plane wave, By neglecting second

gain
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Fig. 11
w-space (a) and K-space (b) pictures of the lasing modes in the.
)(1+0), 1) 1+1)and w) (1 + 2)-dimension..] cases
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order envelope derivatives-it is easy-to approximate the op-
erator on E as. )

0*— 2ik(8, + —1-6,) + 02 + 0} 12
as is usually done in the eikonal approximation of wave
optics. This further-Suggests three relevant physical situa-
tions,

5.1. (1.4 0)-Dimensional Optics

In such a case there is only a time dependence and no
" space derivatives, that is, (1% — 2iwd,. Assuming that the
laser cavity is a cylinder of length L, with two mirrors of
tadius a at the two ends, the cavity resonance spectrum is
made of discrete lines separated by ¢/2 L in frequency, each
one corresponding to an integer number of half wavélengths
contained in L, plus a crown of quasi-degenerate transverse
modes at the same' longitudinal wavenumber, with their
propagation vectors separated from each-other by a diffrac-
tion angle A/ (Fig. 11b).

This case corresponds to a gain line narrower than the

longitudinal frequency separation (so called free spectral

range) and to a+Fresnel number

F

a
AL

of the order of unity, so that the first off axis mode already
escapes out of the mirror. Intuitively F is the ratio between
the geometric angle a/L of view of one mirror from the other
and the diffractive angle 2/o.

In such a case, the resulting ODE replacing the wave PDE
has'to be coupled to the matter equations giving the evo-
lution of P. In the simple case of a cavity mode resonant
with the atomic line, we obtain the so called Maxwell-Bloch
equations.

A comprehensive review of experiment and theory for
these single-domain, (1 + 0)-dimensional systems is given in
the book cited in Ref. 5, covering the period 1982—1987

over which these space invariant instabilities have been stud-
ied.

5.2. (1 +1)-Dimensional Optics

Here, we have a cavity thin enough to reject off axis
modes, but fed by a gain line wide enough to overlap many
longitudinal modes. The superposition of many longitudinal
modes means that one must retain the z gradient. Thus the
wave equation reduces to
(© +c¢c0,) E =GP (13)
where G is a scaled coupling constant.

Having a PDE, any mode expansion with reasonable
wavenumber cut offs provides a large number of coupled
ODE’s, thus it is immaterial whether P and N are adiabat-
ically eliminated, as in class A and B lasers, or whether they

keep their dynamical character as in class C laser. Anyway,
we have enough equations to see space time chaos.

SINGLE MODPE

HoPE‘\ R
i it ///////
@ @ o o ®
CHAOTIC
cv lg/r::} CHAOS [iTInCRANSY sTC
o = PERIODIC
£f ALTERNATI 2V
EXP.SEC.G
Fig12

Space-time complexity in optics, Qualitative plots of different be-
haviors observed in laboratory experiments and in numerical so-
lutions of model equations

Equations as (13) have been solved numerically in the
sixties, to explain space variations on a length scale much
smaller than L, as seen in regular or erratic mode locking,
Fig. 12 collects a sequence of possible behaviors as one in-
creases an intensive control parameter (the pump to loss
ratio) for a cavity long enough to provide a high ratio of
gain linewidth to free spectral range, or alternatively, as one
increases an extensive parameter, that is, the latter ratio for
a fixed pump-to-loss ratio. Since the free spectral range is
given by ¢/2L, increasing the extensive parameter amounts
to increasing the cavity length L,

The circled numbers 1 to 5 denote the transition points.

Threshold n. 1 is the usual laser threshold, whereby un-
correlated spontaneous emission selforganizes into single
mode coherent laser action. Mathematically it is a pitchfork
bifurcation, with critical divergence of the fluctuation am-
plitude and correlation time (critical slowing down). These
transition phenomena have been experimentally demon-
strated in the middle sixties in a series of experiments re-
ported by me at the 1978 Solvay Conference [11b].

In order to consider space variations, one must couple
Eq. (13) with the matter equations. This was done by a mode
expansion of Eq. (13), and a second threshold, n.2, which is
a Hopf bifurcation toward an oscillatory regime, was intro-
duced [36].

A third threshold marks the onset of deterministic chaos
in a single mode laser. In fact it is a cascade of bifurcations
depending on the specific route to chaos, which is influenced
by possible laboratory perturbations, as modulations or
feedback. The isomorphism of the single mode laser equa-
tions with Lorenz equations was first pointed out by Haken
[37]. After that, a large amount of experimental and theo-
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Ietical investigation has been devoted to-chaos in a single
mode laser.

Récent consideration of a space extended optical system
[38] by a model made up of Eq. (13) plus material equations
has shown evidence of -a further behavior, called “chaotic
itinerancy”. It consits in the jump.from one slow manifold
to.another, i.e., from one quasi-attractor to another. At any
time, a single mode with a chaoti¢ behavior is present, but
after a while it is replaced by another mode, and so on.
-Alternatively, in Sec. 6 we will show experimental evidence
of-a non chaotic, but periodic alternation of modes, sche-
'matized in the lower part of Fig. 12. The main indicator of
chaotic itinerancy is that, while a local measurement pro-
vides a chaotic signal, measurement of the space correlations
provides a highly correlated signal.

Above the threshold n.5 we enter a new regime, called
spatio-temporal chaos (STC) where a large number of modes
coexist. This regime has been characterized on very general
grounds by Hohenberg and Shraiman [39]. STC is char-
acterized by some statistical features observed in the exper-
iment reported in'Sec. 6. Such features however play no role
for the scope of this paper and will not be covered here.

5.3, (1 +2)-Dimensional Optics

As shown in Fig. 11iii), let us consider a gain line allowing
for-a single longitudinal mode, but take a Fresnel number
high enough to allow for many transverse modes.

We rescale the transverse coordinates x,y with respect to
~ the cross cavity size ¢, and the time ¢ to the longitudinal
photon lifetime L/(cT), where T'is the mirror transmittivity.
The new variables are

X' =xfa, y =y

t

Y =TT

Furthermore we neglect the longitudinal gradient. Then the
wave equation reduces to

(0«—iaV}) E = GP (14)

where V1 is the transverse Laplacian and

1
= amFT"

As in-the (1+1) case, Eq. (14) must be coupled with the
material equation. If P has a fast relaxation toward a local
equilibrivm with the field, and if we expand its dependence
to the lowest orders, we have a relation as

P = aE—b|E]PE.

Introducing this into Eq. (14), one bas a nonlinear Schro-
dinger equation (NLS) which has been recently considered
in many theoretical investigations [40].

On the other hand, important considerations have been
developed for the complex Ginzburg-Landau equation
(CGL) [41]. This can be written as
Oop = (oy+im)Viu—pu—1—if)ufu. 15)
The CGL includes NLS (for oy = 0) the chemical reaction-
diffusion equation (for o, = 0) and the single mode laser
equation (for oy = o, = 0). Otsuka and Ikeda [41] used a
discretized version of CGL on N = 5 sites with a space
coupling which mimics the second derivative i.e.:

Vzu—bu,+|+u,_1—2u, (l = 1,...N)

and give solutions for = 1, &, = a; = 0.1, and § increasint
for 10 to 30,

For increasing § the system displays a variety of dynam-
ical behaviors as shown in Fig. 12,

6. Chaotic Itinerancy in Optics [42]

In this Section I report the first expcrimental evidence of
(1 + 2)-dimensional physics in an extended optical medium,
Precisely, we seed ring cavity with a photorefractive gain
medium pumped by an Argon laser and study the time and
space features of the generated field. By varying the size of
the cavity pupil, we control the number of transverse modes
which can oscillate, We report two different regimes, namely
one of a low dimensional chaos, where a single mode at a
time is oscillating, and a small number of modes alternates
in a fashion with displays close similarities and one of STC
where many modes oscillate simultancously yielding a very
small transverse correlation length and spectral fluctuations
with Gaussian statistics.

The experimental set up, consits of a ring cavity with
photorefractive gain. The gain medium is a BSO (Bismuth
Silicon Oxide) crystal to which a dc electric field is applied.
The crystal is pumped by a CW Argon laser.

The Fresnel number of the cavity is controlled by a var-
iable aperture. F can be varied in the range from 0 to 100
approximately. This corresponds roughly to the variation
of the number of transverse modes that can oscillate. The
mechanical and thermal stability are ensured on time inter-
vals longer those of the measurements (half an hour).

Fig. 13 shows the transverse (x,y) intensity pattern re-
corded by the video camera (left) and its spatial autocor-
relation function (right). For low F(F = 5) one single mode
at a time oscillates and the wavefront is wholly correlated,
indeed the correlation length ¢ is of the same order as the
cross size D of the beam (Fig. 13a). For high F (F = 70)
many modes oscillate simultaneously, yielding a speckle-like
pattern (Fig. 13c) whose correlation length is very small
(¢/D < 0.1). The correlation test is crucial, otherwise one
might suppose that the intensity pattern at left refers to a
pure mode with a large mode number. Between these two
asymptotic limits, we have a smooth variation of the ratio
2D, with intermediate situations as shown in Fig. 13b.

The low F limit correspunds to 4 periodic alternation of
« few modes of the diffraction limited propagation followed
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Fig. 13

Intensity distribution on the wavefront (left) and space autocorre-

lation function (right) for increasing Fresnel number,

a) F = 5, one single mode at a time is present, ratio between
coherence length ¢ and frame size D is /D ~ 1

b) F =20, ¢/D ~ 025

) F=170,¢/D ~ 01

by a dark period. The radial quantum number is always 0
and the azimuthal quantum number changes from g = 0
to g around 10. (From now on, we identify the modes by
their azimuthal quantum number).

To study the time behavior, the input of an optical fiber
picks up the intensity at a generic point on the wavefront
(the signal level is a suitable code of each mode). The time
plot shows fine details cn a time scale of seconds, corre-
sponding to the dielectric relaxation time of BSO. This time
scale is typical of the fluctuations in a pure mode and of the
intermode switches. Each mode persist for a time of the
order of a few minutes. The mode pattern (e.g. 7,6,5,4,3,2
in Fig. 14b) repeats almost periodically. To improve the
selectivity we commute from the pinhole (low pass filter) to
the pinhole plus an axial stop (band pass filter). For the
same aperture size, introduction of the axial stop cuts off
the lowest modes (1 and 0) and produces the regularization
shown in going from Fig. 14a) to b).

At.the minimum Fresnel number for which some signal
is observed (F around 2) still 4 different modes oscillate one
at a time, followed by a dark interval, in a very regular
periodic sequence, We call such a behavior “periodic alter-
nation”. Increasing the pump intensity, the frequency of the
alternation increases but it remains regular. For a slight
increase of F above 5 the regularity is lost, that is, the du-
ration of each mode is no longer repeatable. This is an ex-
perimental evidence of “chaotic itinerancy”.

(@)

NTENSITY (arb. units)

-
3

" ‘
at )
:

A“ﬂ

1200

!

o} 400

800
TIME (3)

(b)

INTENSITY (arb. units)

\

1200

0 400 200 1600
TIME (s)

Fig. 14

Time records of the local intensity (samples collected at 10 Hz rate)
atF=28

a) with the low pass filter (chaotic itinerancy)

b) with the band pass filter (periodic alternation)

In the high F limit, when é/D < 1, we expect spatio-
temporal chaos (STC) and indeed we have given evidence
[42] of Gaussian spectral fluctuations.

In conclusion, we have reported experimental evidence of
periodic alternation and STC as two asymptotic limits for
very small and large Fresnel numbers in a (1 + 2)-dimen-
sional optical system. At the lower edge of the intermediate
region we have observed chaotic itimerancy. For still larger
F we should expect transition phenomena which are not
simply a mathematical bifurcation as the usual laser thresh-
old but which display the scaling properties of phase tran-
sitions in extended media.
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A series of picosecond experiments and computer simulations will be presented that test collisional and ™

hydrodynamic.models for vibrational relaxation in liquids. The relationships between isolated binary

collision models (IBC) and stochastic dynamics will be presented. The appropriateness of IBC theory in
describing vibrational relaxation in liquids will also be discussed.

A proper description of vibrational energy transfer is es-
sential to the development of chemical reaction theory. In
liquids, progress in-this area is far:behind that which has
been made in other phases because of the complexity in-
herent to this phase. Generally, two approaches have been
taken in attempting to model the vibrational relaxation of
an excited oscillator in solution. One approach takes the
perspective of the excited molecule being solvated in a con-
tinuous viscoelastic media which exerts a [rictional force on
the molecule. The most general form of this interaction is
described by the generalized Langevin equation:

ma(t) = —j' de'my(t’yv(t—t") + R(1) )

where m is the mass of the particle, R(t) is the random force,
and y(¢) is the memory function which provides the friction.
In this description, the noninstantancous response of the
media to the motions of the oscillator are included. The
difficulty with this method has been in developing a model
of-determining the form of y(¢) [the frequency dependence
of the friction]. Very early during the theoretical develop-
ment of vibrational relaxation in liquids, prior to use of the
generalized Langevin model, a simpler form of this model
known as the Langevin equation was used to describe vi-
brational relaxation in solution [1]. According to the Lan-
gevin equation,

ma(t) = —yo(t) + R(t). 2)

In the Langevin model, y, the friction coefficient, is a con-
stant and thus, the solvent is assumed to respond instan-
taneously to all oscillator motions. While this model has
been successful in describing some phenomenon where the
solute moves slowly in relation to the solvent molecules, it
has failed in the modeling of vibrational relaxation where
the oscillator motions can be quite fast in comparison to
that of the solvent [2].

An alternative perspective adapted to describing vibra-
tional relaxation in solution is that based on the molecular
nature of the solvent-solute interactions. In this framework,
the interactions which are important to vibrational relaxa-
tion are assumed to be dominateu by isolated binary colli-

Ber. Bunsenges. Phys. Chem. 95 (1991, Av. 3
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sions between the solvent molecules and the oscillator, just
as they occur in the gas phase. This model known as the
Isolated Binary Collision Model (IBC) states that K;_.;(o. T),
the relaxation rate of vibrational level i to j, is:

Ki-)@T) = Py Z(a,T) 3)

where P,_.;(T)is the probability of i—j per collision, Z (g, T')
is the oscillator-solvent collision frequency, ¢ is the solvent
density, and T is the solvent temperature. Since P,.,, is in-
dependent of density, the difference between relaxation in
the liquid and gas phases at constant T is solely given by
Z(p). Thus, multibody effects (i.e. , correlations between col-
lisions) are considered to be inconseqnential in this model.
The validity of this assumption has been the subject of a
longstanding debate in the literature,

As a test system for IBC theory, we have examined its
applicability to experimental measurements and computer
simulations of the ground state vibrational relaxation of
geminately recombined I, in liquid Xe. Following photodis-
sociation and recombination on the ground state surface,
the I, has an éxcess of 12500 cm ™' of vibrational energy
which it then dissipates to the solvent. This relaxation proc-
ess occurs over 100 I, vibrational levels with the vibrational
spacing varying from 0 to 214 cm ™. Since I, contains only
one vibrational degree of freedom, the role of the solvent n
dissipating the excess vibrational energy of the excited I, can
be studied with this system without competition from intra-
molecular vibrational energy transfer. Furthermore, Xe is
an ideal choice as the solvent because of its spherical ge-
ometry which makes computations on this system easier and
eliminates all but the translational degrees of freedom as the
solvent energy accepting modes.

1BC theory is not expected to be valid for this system for
two reasons. Frist, the low vibrational frequencies involved
are comparable to the expected collision frequencies. Thus,
interference between collisions would be expected to occur.
Second, IBC theory should not be applicable to a highly
excited oscillator in solution as the collisions will be driven
by the large amplitude motions of the oscillator rather than
occurring at random intervals resulting from the solvent
motion. In contrast, previous studies of the IBC theory's
validity at liquid density have focussed on the density de-

UUS-9021,91,0303-0299 $ 3.50 +.25,0
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pendence of the » = 1—0 time of high frequency oscillators
such ds H, and N, where the above conditions do not exist
and-IBC theory may be valid [3],

Additionally, study of the - multilevel relaxation process of
I, offers a -unique perspective on. the validity of the IBC
imodel as compared to these other experiments. The diffi-
culty with interpreting the results of the v = 1—0 studies
is that a calculation of Z (g) is necessary in order to ascertain
the validity of the IBC model since the relative change in
relaxation rates between two densities ¢, and g, according
to the IBC model is given by

Ki_y(e) _ Z(a)
Kt—](ez) Z(g2) '

@

In solution, a collision is a nebulous concept and calcula-
tions of Z vary widely in magnitude with model and are
very:sensitive to.parameters such as molecular size. Thus,
studies in which the relaxation rate between two levels is
measured as a function of density do not test the underlying
assumption of the density independence of P,..; separately
from the model of Z () employed. In the experiments on I,
the relaxation has been experimentally measured over ap-
proximately 30 vibrational levels (we could not directly ob-
serve the relaxation over the upper half of the ground state
surface). Following the relaxation over a large number of
vibrational levels as a function of solvent density eliminates
the need of calculating Z in testing the density dependence
of the Py..;. .

To understand this distinction, consider the relaxation
process over many vibrational levels in the IBC framework.
After Z(g)-t binary collisions, the vibrational population
distribution vector, N(t), would be

N({) = P-P:P..-P-N(t=0) = P*""-N(t=0) ©)

where P is the matrix of relaxation probabilities per collision
for transitions between all levels of the system. The role of
Z(g) in this description of the relaxation is to control the
timescale of the relaxation process. If the time were nor-
malized by Z(g), i.e, ' = t/Z(g), then the resulting N(t')
would be identical for all p. Hence, plots of the average
energy of the system as a function of time for different den-
sity should show the same functional form, differing only by
a linear scaling of the time axis which accounts for the
change in Z(p). Provided Z(g) does not vary with vibra-
tional energy, any deviation from linear scaling would be
an indication of nonbinary behavior. The timescaling factor
S necessary to overlap the energy decay curve at g, to that
of g4 can be determined from

Z(a)t = S-Zla)t ©

which leads to

_ Z(01)
5= Z@) @

The I, vibrational energy as a function of time is determined
experimentally through picosecond transient absorption
spectroscopy. Due to the change of the Franck-Condon fac-
tors with vibrational energy, the transient absorption shifts
from the near infrared at high vibrational energies to ap-
proximately 520 nm at v = 0. With the transient absorptions
in this wavelength region-and by calculating the extinction
coefficients for the ground state absorption, the vibrational
population distribution can be determined as a function of
time by applying Beer’s law. This analysis has been per-
formed for the lower 6000 cm~! of the I, ground state po-
tential surface. The density range of Xe in which the exper-
iment was performed was 1.8 to 3.4 g/cc at 280 K which
corresponds to a Lennard-Jones reduced density (o ¢°) range
of 0.57 to 1.07 at a Lennard-Jones reduced temperature (k7/
&) of 1.26. A sample plot of vibrational energy vs. time for
the 1.8 g/cc and the time scaled *.0 g/cc is shown in the Fig.
1. The functional form of the relaxation at all densities is the
same, Thus, the P,_,; are density independent over the entire
liquid density portion of the Xe phase diagram as is assumed
in the IBC model,

6.0
i
54,5t o 1.8 G/ML
(]
a - 3.8 G/ML
- 3.0 (SCALED BY 3.0)
2
w
2
u
1.5}
=
0. 2500, 00D, 7500, 10000,
TIME (PSEC)
Fig. 1

The 1,’s average vibrational cnergy as a function of time in 1.8 g/
cc Xe (circles) and in 3.0 gfcc Xe (line) where the time base of the
3.0 g/ce data has been multiplied by 3.0. The functional form of the
relaxation is identical for the two solvent densities. The error bars
represent one standard deviation of the average energy for the 1.8
g/cc Xe solution

Concurrent with the experiments, a theoretical model of
the I,/Xe system was constructed. In order to provide a
reference system for comparison of IBC and continuum the-
ories, a molecular dynamics simulation of I,/Xe was per-
formed. Comparisons of the predictions of these theories
with the simulation results will therefore not depend upon
differences in the potentials assumed (in contrast to com-
parisons with the experimental results) [4]. The system was
a classical molecular dynamics simulation using periodic
boundary conditions. The potentials used were a Lennard-
Jones potential between the iodine atoms and Xe atoms and
a RKR potential for I,. There were 255 xenon atoms and
one iodine molecule in the system, these numbers were cho-
sen because they minimized the effects of heating of the
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liquid.after dissociation due to thé small number of particles
.and if.was still a small enough system to allow a reasonable
number- of trajectories to calculated on a Cray X-MP. The
functional forms of the vibrational energy vs. time for all
‘the densities performed were the same. This would seem to
indicate as described above that the P,_.; are density inde-
pendent. Also, the functional form found from the molecular
dynamics simulations was seemingly the same functional
form found in the experiments. The only difference was that
the molecular dynamics relaxed about 12.4.times faster than
the experiment. This may be due in part to the finite volume
of Xe heating up'from the dissociation energy of the iodine.
Also, the Lennard-Jones potential may be steeper than the
real I~ Xe potential. Qualitatively, the density dependence
of the relaxation was the same for both the molecular dy-
namics and the experiment. There was some discrepancy in
the actual numbers. Over the liquid range studied by the
experiment, from 1.8 g/cc to 3.4 g/cc, the vibrational relax-
ation was 4 times faster. The molecular dynamics was also
4 times faster for the range of 1.8 g/cc to 3.0 g/cc. The
molecular dynamics could not be run at 3.4 gfcc because
that is Lennard-Jones solid while real Xe is a fluid. This
shows that the molecular dynamics seems to be a fairly
realistic representation of the vibrational relaxation in the
liquid and only fails mainly to lack of exact potentials,

Given the success of reproducing experimental results by
the molecular dynamics and the evidence that IBC theory
may provide a valid model for explaining the experimental
results, an IBC calculation was performed. The calculation
of Py..; performed for I, and Xe is a one dimensional classical
calculation of energy loss, Studies have shown that the one
dimensional calculation is a reasonable substituie for three
dimensions if the constraints described in a paper by
McKenzie are realized [5). The I-1 potential used is the same
RKR surface as used in the molecular dynamics simulations.
The potential between I and Xe is a Weeks Chandler An-
derson (WCA) decomposition of the Lennard-Jones poten-
tial [6]. Note that the WCA decomposition was originally
intended to explain liquid structures for reduced densities
greater that 0.6. Even though most of the comparisons to
molecular dynamics will be in this range, WCA was not
chosen for this reason.

Vi) = de [(912 - (—:-)6] + C where r<r,
e=a|(F)'-(3)]

Vi)=0

where r, =294 ®
wherer>r,.

The WCA decomposition was chosen for three reasons.
When a gas liquifies, energy (the heat of vaporization) is
released due to the solvent atoms spending most of their
time in the bottom of the well where the potential 15 repul-
sive. The attractive part of the potential is defined as the
part of the potential where ihe accelerations are negative.
Note that in the Lennard-Jones potential, the putential en-

ergy may be negative for r < 62!, but the accelerations are
not negative. Since the liquid rarely samples the attractive
part of the potential, it was thought that the IBC simulation
would be more realistic if it also did not sample that part
of the potential. The turning point in the gas phase will also
be on average at a smaller radius than in the liquid due to
the heat of vaporization, however, the one dimensional mo-
del's turning point should be comparable to the molecular
dynamics simulation due to the use of the WCA potential.
Secondly, not having an attractive section of the potential
makes the integration of the trajectory much quicker since
there is less distance to integrate over and there is no pos-
sibility of forming a long lived complex. Thirdly, the molec-
ular dynamics simulation that the one dimensional trajec-
tories would be compared to used a Lennard-Jones potential
and the WCA decomposition is the closest approximation
to the Lennard-Jones potential within the above constraints

The trajectories show qualitatively what you would ex-
pect keeping in mind I,’s anharmonicity. Vibrational energy
transfer increases non linearly as a function of v, the vibra-
tional quantum number, This at variance to Landau Teller
theory, which predicts a linear increases with v. Of course,
Landau Teller theory is based on a harmonic oscillator and
I, is most definitely not a harmonic oscillator. A calculation
of I’s average vibrational energy vs. time was performed
using data provided by the one dimensional calculations and
it was found that the functional form of the energy loss was
the same as both the molecular dynamics simulations and
the experiments.

In order for IBC theory to be a useful theory it must also
be able to make quantitative predictions of the relaxation
for a particular density and predictions of the density de-
pendence. The collision rate of 4.5 per ps., which was re-
quired to fit the molecular dynamics simulation, is a quite
reasonable first order guess of what the collision rate should
be for Xe at. 1.8 g/cc. Since the trajectory calculations were
one dimensional, there must be some steric weighting factor
to take into account that some collisions are not collinear.
It is not clear what that factor should be, the value for the
steric factor could range from one to less than 1/3 [7,8].
Nevertheless, the fact that P,_,, scems to be constant as a
function of density demonstrates that the steric factor is also
a constant of density. An estimate of the scale factor can be
found using

K (o) g:1(R¥)
K, a (Qz) g:(R*) ©)

K, is the rate for the liquid at density g,, where the i—j
subscript has been dropped, K; is rate at liquid density g,,
g1 (R¥) is the radial distribution function for that liquid den-
sity evaluated at some R¥, and ¢,(R¥) is the radial distri-
bution function evaluated at R* for density 2. R¥ is the
turning point for the most effective collisions and it is as-
sumed that this region is small. In 1971, Davis and Oppen-
heim derived this equation, using a master equation ap-
pruach to describe vibrationdl relaxation in the weak cou-
pling limit in a liquid [9,10]. Their theory was thought at
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the time to apply -only to high. frequency  oscillators, al-
thotigh- work by Chesnoy seems to indicate otherwise [11].

This presents the problem of calculating the g (R*) for the
oscillator. One approach to this problem was to use the
attractive hard spheres pair distribution model by Delalande
and-Gale:[12]. This model assumes that the collision rate
should be calculated at the hard sphere radius. One then
assumes the radial distribution function at R* can be ap-
proximated by the Carnahan and Starling approximation,

[13]

(1-3)
(R¥) = gus(ig) = ~—ri 1= 2 00? (10)
g _gHSSlg = (1__”)3 y n= 690-

where ¢ is the hard sphere contact distance and g is the
number density, The problem with this approximation is
that the hard sphere radius which provides the best model
for the radial distribution is not necessarily the correct ra-
-dius at which.to evaluate R*. A more sophisticated version
of this theory was employed by Madden and van Swol [14].

They used WCA theory to calculate the cavity distribution

function which was then related to the ratio of vibratjonal
relaxation rates in a dilute gas to a dense liquid. This as-
sumed that g(R) could be approximated by a properly cho-
sen hard sphere fluid of the same density. They did not
equate R* with the hard sphere diameter used to calculate
the radial distribution function. We calculated the radial
distribution of an iodine atom in liquid Xe directly. Using
the R* calculated from the one dimensional trajectories,
3.7-38 A, good agreement was found for the scale factors
given by equation nine for the different densities.

The scale factors could also have been calculated using
continuum theories, It has been shown that the vibrational
relaxation rate is affected by [15,16]

7o) = (SO0 /e.0) a9

EO = (Z/0,0/6.0)) . 12

Where F(t) is the total force autocorrelation, F;(¢) is the
binary force -autocorrelation and f{(t) is the coupling from
the liquid to the oscillator at ume ¢. Oxtoby has also con-
sidered this type of division of the forces [17]. From these
correlation functions and the Golden Rule, the relaxation
rate is

1 ol
R fdeei Fp). (13)

Basically, the component of the force autocorrelation spec-
trum at the oscillator frequency determines the relaxation
rate. Figs. 2 and 3 show the force autocorrelations and the
frequency spectrum for an I atom in liquid Xe at 1.8 g cc.
It has been found that the binary force autocorrelation func-
tion frequency spectrum was very similar to the total force

autocorrelation function frequency spectrum, down to fre-
quencies of &~ 50 cm~". This is evidence for the appropri-
ateness for using IBC theory to model the vibrational re-
laxation even though I, has such a low vibrational fre-
quency. This implies that the coupling to the bath is weak
and could be treated as linear. Accordingly, stochastic-the-
ories should also be appropriate for this system. A stochastic
approach should work due to the linearity of the system and
its ability to take into account the many body forces through
the total force autocorrelation. Smith and Harris have ap-
plied a generalized Langevin equation technique to this
problem and also found results that agree with the molecular
dynamics simulations [18,19].

TOTAL FACF (-) IBC FACF (~ =)
1'2 L) T ¥ T L]

0.8

0.8t

0.4r

ARBITRARY UNITS

0.2}

]
o
-~

2.5 3

TIME (PSEC)

Fig. 2

The total force autocorrelation and the binary force autocorrelation
described in Egs. (11) and (12) are calculated for an I atom in 1.8
g/cc Xe. The carly time components are very similar

Both of the above approaches will fail if the coupling
between the bath and oscillator is strong. IBC theory will
also fail if the binary force autocorrelation function power
spectrum at the appropriate frequency is not the same as
the total force autocorrelation. The most probable reason
for the two force autocorrelation functions not being the
same is if many body effects become more important and
provide damping at the oscillators frequency.

Thus we have shown through experiments and calcula-
tions that IBC theory and continuum theories seem to
model well the vibrational relaxation of I; in a simple liquid.
Thus is somewhat surprising given that I, is such a low fre-
quency oscillator and the I, vibrational amplitude is quite
large in the upper part of the well. Further experiments in
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Stochastic Resonance
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Stochastic Resonance (SR} is a term given to an effect which is manifest in multi stable nonlinear systems
driven simultanedusly by noise and a weak periodic function, whereby the information flow through the
system, in the form of the frequency of the periodic function, is assisted by the noise. For every frequency
of the modulation, the information flow is optimum for a specific noise intensity, that is for a specific
Kramers transition rate, hence the term resonance. Two physical quantities which characterize the response
of such a system have been the objects of a flurry of recent experimental and theoretical activity: the
Fourier transform, or auto correlation function of the appropriate state variable, and the probability
density of the residence or escape times. The former have been used to obtain the power spectra and
hence the signal-to-noise ratios of the response, while the latter directly reflect the rates and symmetry
properties of the system. Casculation of these quantities pose specific problems for theorists characteristic
of non stationary Fokker-Planck systems. In this paper, I will briefly review the recent activity and include
some remarks on the historical foundations of SR.

L Introduction portant in studies on dynamical bifurcation phenomena, for
In recent years, interest in time modulated, stochasti, non-  example, phase transitions oceunng under the simultaneous
linear systems fias been increasing. Such systems are im-  influence of nuise and time dependent parameters as well as

005-9021,94,0303-0303 $ 3.50 +.25,0

Ber. Bunsenges. Phys. Chen: 95 (1991, Mo. 3 « » CH Verlagsyesellschaft subH, 1 -6940 Wenhenn, 1991




304 F. Moss: Stochastic-Resonance

'various transport and phase locking properties of multi-

stable systems [i- 6] Stochastic resonance (SR) is an ex-
ample with.an interesting hlstory as well-as a number of
modern applications. The physical phenomenon.of SR :is
simply exp]amed Consider, for example, an over damped
particle moving in a double well potential subject to a ran-
dom force. The system may be in contact with a heat bath,
50 the . the random forces result from thermal fluctuations.
“This simple construction is the starting pomt for many mo-
lecular dynamical models which form the microscopic basis
of modern chemical rate theory, as well as a variety of other
physical applications [7].

In the pfesence of noise, assumed to be Gaussian distrib-
uted, the particle can make transitions. SR arises because of
an interplay between the modulation frequency and the fa-
mous Kramers rate [8], which in the unmodulated system
is given by

r0 = 5= TIU"ONU" (O] exp(~AU/D), O

whcre U“(0) is the curvature of the potential barrier located
(at x = 0) between the two wells. U"(c) is the curvature of
the bottom of the wells (at x = =¢), AU, is the height of
the barrier of the unmodulated potential, and D is the noise
(or thermal fluctuation) intensity, defined by the correlation
function.

GBEE) = 2Do(t-9), @

with (&(1)> = 0. In the absence of modulation, the particle
makes transitions over the barrier at random times and re-
sides in one or the other:well for a random length of time.
The response is similar to the random telegraph signal. The
probability density of the residence times is a decreasing
exponential function, and the power spectrum is a Lorent-
zian.

Now we can further imagine that the pariicle is subject
to an:additional force: a weak periodic modulation of fre-
quency . Here, “weak” means that the periodic force alone
is not sufficiently strong to induce the particle to undergo
a transition from one potential well to the other. However,
in the additional presence of the noise, the particle makes
tran-itions, which are now, however, to some extent coher-
ent with the modulation. The potential is time dependent

Ux,t) = Up(x) + exsinwyt, 3)
and il ¢ € AUy, and w, < 1y (the latter is known as the ad-

iabatic approximation) the time dependent Kramers rate is
approximately given by

1 .
r( = O @ U (0] exp[{(— AUy + esinwgt)/D] .

It is this modulation of the rate which accounts for the
coherence between the respunse and the modulativn fune-
tions.

For vanishingly small noise intensity, D — 0, the switch-
ing rate approaches zero, and consequently the coherence
vanishes. For indefinitely large noise, the coherence again
becomes vanishingly small as the system response becomes
completely randomized. Between these two limits, there is
an optimum noise intensity which maximizes the coherence.
Early theorists unfortunately called this a “resonance”,
though the phenomenon is clearly distinct from true reso-
nances, for example resonance activation which occurs when
under damped systems with inertia are driven by an external
frequency comparable to a natural frequency [1,2].

A number of characteristics of SR have been observed
experimentally and satisfactorily explained by modern the-
ory, as I will outline in Section 2. The dynamics of SR can
be approached, both in theory and experiment, on two lev-
els. One can look at a reduced, or “two state”, dynamics
wherein the only information required is which well the par-
ticle resides in at a given moment, Alternatively, one can
observe the complete dynamics which, in addition to the
switching events, includes the stochastic and regular mo-
tions within the individual wells.

The most frequently observed physical quantity in SR
experiments is the power spectrum P(w). In measurements
on real physical systems with symmetric potentials U(x), the
power spectrum shows a sequence of sharp peaks (in theory
they are delta functions) of decreasing amplitude located at
odd integer multiples of the modulation frequency riding on
a broad Lorentzian noise background. If the symmetry of
U(x)is destroyed, weaker peaks at the even integer multiples
of w appear. The signal-to-noise ratio (SNR) is the ratio of
the amplitude of the signal peak to the amplitude of the
noise background, both determined at the fundamental fre-
quency. The signal peaks represent the coherent part of the
response. SR is demonstrated by observing that the SNR
increases from zero and passes through a maximum with
noise intensity in the two state dynamics. (For the complete
dynamics, in addition, the SNR — oo in the limit D — 0,
due to the coherent motion within a single well.)

The total power contained in the noise and the signal can
be determined by integration of the power spectra. In the
two state dynamics, it is observed that the total power is a
constant, i.e. as the power of the modulation is increased
the power in the signal peak increases while the noise power
decreases to maintain the total constant. For the complete
dynamics, the relation between these two powers is more
complicated, but generally, the signal power grows at the
expense of the noise power in the response.

An alternative quantity, which also clearly demonstrates
the coherence of the stochastic response with the modula-
tion, is the probability density of residence times. This quan-
tity shows a sequence of strong, Gaussian-like peaks cen-
tered at odd integer multiple of the modulation half period,
T/2 = njw, characterized by exponentially decaying maxi-
mum amplitudes. There are no corresponding features at
sub harmonics of w in the power spectra,

In Section 2 of this paper, I will sketch the historical
development of SR theory and vutline the modern theories.
In Section 3, I will discuss the two experiments which have
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.beén done - and summarize their results. In- Section 4 the
techriique of physical: méasurements on analog simulators
of SR systems will be introduced. Some- representatlve data
is.presented’in this section:and compared with the theory
F, inally, a summary and some speculation on-future possi-
bilities:are presented.in Section 5.

2. Historical Background and -Modérn Theory
A. Historical Background

The mechanism of SR was first propounded and investi-
gated by Vulpiani and his co workers [9] as an.interesting
stochastic effect in nonlinear dynamics which might have
useful applications in a- varncty of fields. The chief theoretical
difficulty in SR problems is-that in the presence of an ex-
ternal temporal modulation, the corresponding Fokker-
Planck (F-P) equation is not solvable for the probability
density exactly, These early authors, therefore, concentrated
on'estimates of the mean residence or “sojourn time”, dem-
onstrating that this time became closely comparable to the
half period of the external periodic modulation for-the op-
timum value of the noise intensity.. Residence time theory
for periodically modulated stochastic systems, which
avoided the problems posed by the non stationary F-P
equation, had been earlier developed by Eckmann, Thomas
and Wittwer and was successfully applied to SR early on
[10]. It can be mentioned at this point that residence time
measurements have only recently been made on experimen-
tal SR systems, as I shall discuss in Section 3, The first study
of SR in a partial differential system was carried out on the
stochastically perturbed Ginzburg-Landau equation also by
Vulpiani and company [11]. Finally, these same authors,
together with Parisi, proposed SR, in 1982, as a possible
explanation of the observed periodicities in the recurrences
of the earth’s ice ages [12]. In this view, the earth’s climate
is represented by a one dimensional bistable potential, one
{(meta) stable state of which represents a largely ice covered
earth [13]. The external noise is assumed to come from short
-term fluctuations in the balance between radiative and trans-
port processes, and the periodic modulation is most often
supposed to originate from variations in the insolation re-
sulting from a small observed oscillation in the eccentricity
of earth’s orbit having a period of 100,000 years. Moreover,
the power spectrum of the dynamical coordinate of the sys-
tem was introduced here for the first time in SR systems in
numerical simulations of.the climate model.

In 1983, Fauve and*Heslot made detailed measurements
on a noise driven, periodically modulated, bistable electronic
system (a Schmitt trigger) [14]. They measured the power
spectrum of the output from which they extracted the SNR,
and observed that this quantity passed through a maximum
with increasing noise intensity, thus demonstrating SR for
the first time in a laboratory experiment. The location of
the maximum in the SNR' was identified (roughly) with the
specific value of the noise intensity for which the Kramers
rate in the unperturbed potential becomes comparable to
the modulation frequency. No theory was put forth by these
authors. Instead, their experiment served to clearly dem-
onstrate the observable, physical aspects of SR.

Interest in SR seems then to-have waned until 1988 when
McNamara, Wiesenfeld and Roy:demoénstrated.- it in an-in-
genious experiment with a ring laser [157 which I will briefly
discuss in Section 2. This experiment iminediately stimulated
4 rash of theoretical activity [16—23] as\well as two analog

simulations [22—25] which. I will discuss further in Sec-
tion 2.

B. Qutline of the Recent Theory

Two models have been considered, as mentioned before:
the two state and the complete dynamics modéls. Consid-

.ering these models, contemporary theories fit into two cate-

gories: the adiabatic approximations [16,17,20,22], and the
non adiabatic calculations [18,21]. Though originally the
means by which F-P systems could be treated within adia-
batic approximations was put forth by Carolli et. al, [26],
and more recently by Bryant, Wiesenfeld and McNamara
[27], the first contemporary use of this-approximation for
SR theory was due to McNamara and Wiesenfeld [16]
MW),

The object is to calculate the power spectrum of the mo-
tion of a particle moving in a generic bistable potential
within the framework of the two state model. Following
MW, discrete variables x, are chosen to denote the location
of the particle in either the right (-+) or left (—) potential
well with corresponding probabilities n, for which n,, =
1—n_. A rate equation can then be written in terms of W,
the transition rates out of the 1 states:

dn.. dn..

- W+"+- (5)

- ——e 72

dt dt

The probability density is effectively reduced to a pair of
delta functions located at the minima of the two potential
wells and weighted by n.,. and n.. respectively, and from
this density the moments can be computed. Specifically the
second moment {x%), is needed. In order to solve (5), some
approximate form for W, is required, and MW use an ex-
pansion in terms of a small parameter 5,cosw,t, where
o =¢/D:

1
Wy =_2-(“oi0‘1110 cosmpt +...), ©

where ¢y and the product «, 15, are treated as parameters
of the system. From Eq. (5), a solution for n., can be ob-
tained, and from that the autocorrelation function
O x(t+1)|x0,t0) and its ty— oo asymptotic limit
{x(@x(t+1)). This quantity leads directly to the power
spectrum through the Wiener-Khintchine theorem:

_ %ing ][4<x2>ao]
st = [1 - it | e -
+ n{x® of s 50— ).
g wh

This result makes two notable predictions, both born out
by experiment, as shown in Section 3. first, the shape of the
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power spectrum is a delta function contributed by the modu-
fation riding on:a Lorentzian noise background; and second,
the total power, signal plus noise, is-a constant, This latter
remarkable property means that the power in the signal part
of the response grows at the precise expense of the noise
power: a property which is true only of the two state model.
MW have generalized their theory to include the complete
dynamics of an over damped particle in the standard quartic
potential:

a b
—2--x2 + —‘-‘-x“~cx coswyt , (8)

Ux,t) = —
where, for the unperturbed (¢ = 0) potential, AU, = a*/4b
and the minima are located at +¢ = *|/a/b. The Langevin
equation therefore reads,

%= =0U (x.t) = ax —bx* +ccoswyt + [/2DEE). (9)

In this case, the parameters are known: oy = (Via/n)
exp(—AUy/D); &y = 20 and 1y = &c¢/2D, which can be
substituted into Eq. (7) in order to obtain the power spec-
trum. For the complete solutioh, I refer the reader to Ref,
[16], and quote here instead only an approximate expres-
sion for the SNR, valid for small modulation strength

ag*c?
SNR = 3 exp(—AUy/D).

(10)
It only remains to summarize briefly the-approximations
used by MW, First, the adiabatic approximation in the MW
theory is wy € U”(4c) rather than the more stringent con-
dition (at least for small D) that w, < r,. The retention of
only the first two terms in the expansion of Eq, (6) requires
that o 5y < ¢, or in the model using the quartic potential,
that 5y <€ 1. This means that ¢ € D and that ¢ < AU,.

I mention here that the adiabatic approximation has also
been used for construction of a contemporary theory of the
residence times in SR systems. For the details of that theory,
I refer the reader to Ref. [22] and to the paper by P. Jung
and P. Hinggi in this Proceedings. Suffice it to say here that
the theory predicts a sequence of peaks in the probability
density of residence times, of exponentially decreasing am-
plitude, located at the odd integer multiples of the modu-
lation half period m,w,. Some examples measured on the
anatog simulator experiments are shown in Section 3.

The MW theory has also been used to calculate the SNRs
of a noisy neuron [25] using the Hopfield potential [28],

2
Ulx,t) = -)52—— — y(¢) In(coshx) — ex coswyt — x5, (1),

11

where the one dimensional state variable x, represents the
finng rate. Moreover, for this model the MW theory has
been generalized to include multiplicative noise.

ne) = o+, 12)

where &, and &, aré the additive and multiplicative noises
respectively. For the details of this calculation and for the
results of an analog simulation of this neuron potential for
both over damped and inertial dynamics, the reader is re-
ferred to Ref. [25].

Turning now to the non adiabatic theory of Hénggi and
Jung [18], the generic Langevin equation used in the de-
velopment reads
X = x—x>+ecos(wpt +¢)+ &), (13)
where ¢ is a random phase uniformly distributed over one
cycle [0,2n], and where £(¢) is the usual Gaussian, white
noise, The periodicity of the resulting, non stationary F-P
equation is used in analogy with procedures used in peri-
odically forced quantum mechanical systems to write down
a solution in terms of a Floquet characteristic exponent u

o0

e =et T ph(one. (14)

The Floquet exponents are identified with the eigenvalues
of an analogous two dimensional F-P process which are
purely imaginary. This implies that the autocorrelation func-
tion x(¢) is a non decaying periodic function. This function
is calculated explicitly from the asymptotic probability den-
sity obtained as the solution of the non stationary F-P equa-
tion, It is shown that the very same autocorrelation function
can be obtained from the non stationary F-P equation by
averaging over the random phase ¢. It is important to note
that all SR experiments, using both the laser and analog
simulators, are performed by inherently averaging over the
(random) phase of the periodic modulation, This is discussed
further in Section 3. The predictions of this theory for the
real one-sided (i.e. measurable) power spectrum are twofold:
first, the predicted signal features in the power spectrum are
a sequence of delta functions, and second, for symmetric
potentials like the standard quartic, they occur only at odd
multiples of the modulation frequency. These predictions
have been born out by both the laser experiment [15] and
most especially by measurements on analog simulators [24]
where the measured line widths in the signal are completely
accounted for by the instrumental resolution and bandwidth
{i.e. the signal features in a system with infinite resolution
and bandwidth would be ideally delta functions). Moreover,
the sequence of peaks at odd multiples of w, are readily
observed.

Finally, I conclude this section with a brief outline of the
theory developed by Marchesoni and coworkers [20,23].
They have treated first the case of an over damped particle
in the standard quartic potential within the framework of
perturbation theory also in analogy to techniques developed
for treating periodically forced quantum mechanical sys-
tems. Thus they also avoid the limitations of the adiabatic
approximation, but are instcad confined by the limitations
of perturbation theory. While the results of these calcula-
tions are in qualitative agreement with analog simulations
performed by the same group, the theory does not predict
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the delta function form for the signal function.nor does it
predict the sequence of features at odd harmonics of wy. A
major contribution by this group has been to treat the case
of inertial motion within the adiabatic approximation, and
to show that the same approximation can be used to obtain
some predictions-about the behavior of SR systems in the
-presence of colored noise. the relevant Langevin equation is

Ky = x-x*+E(@), (15

where y is the damping coastant, and &(t) is now a colored
noise defined by

€08 = expl-lt =3, 6

with 7 the noise correlation time. The results of this theory
are in quite good agreement with SNR measurements made
on an analog simulator of Eqs. (15) and (16) for various
values of both y and 7 considered as parameters,

3. Experiments and Simulations

An carly clectronic cxperiment on SR was done by Fauve and
Heslot [14] using a Schmitt trigger. This cxperiment was repeated
more recently also by McNamara and Wiesenfeld [16]. The dy-
namics of the Schmitt trigger are reprcscmcd by the twy state
model. An elementary diagram and the input-output voltage char-
acteristic of this device are shown in Fig. 1. When ~operated such
that {(¥,> = 0, i.c. 1 the middle of the bistable rcglon, the output
voltage Vy, can assume either of the two values, V,,, = +V;. With
'noisc\alonc as the input, the trigger randomly switches between
these states, and the output is the random telegraph signal. When
the periodic modulation is added to the noise, the switching events
become to some degree coherent, and the measured power spectrum
of the output shows the characteristic sequence of delta-like peaks
riding on the Lorentzian noise background as discussed in Section
2. The SNR can be measured in the usual way using the amplitudes
of the signal peak and the noisc at the fundamental modulation
frequency. MW find good agrcement between their SNR measure-
ments and the two state theory.

Vo

€ sinwt Vi, +Vy

&

f

..V1

| (a) (v)

(@) A schematie diagram of a Schmitt tnigger using an operational
amplifier driven by nowse and a penodic function. (b) The transfer
characteristic of the Schmutt trigger. The vrcuit vperates as the two
state model within the bistable region

It was the observation of SR in a dye, ring laser [15] by
McNamara, Wiesenfeld and Roy, however, which triggered the
modern burst of theoretical activity. These authors desunibed an
experiment whercin the bistability is represented by the direction
of travel of the light within the ring. An awoustu-uptic mudulator

is inserted in the ring. This device creates a potential having a weak
barrier separating two stable states which correspond to the two
directions of light travel. The potential can be modulated with the
acoustic frequency which is in turn controlled by the external noise
and periodic signal voltages. A fraction of the light traveling in one
direction was extracted from the ring and passed to a photo diode.
The output of the photo diode was amplified, stored in a digital
oscilloscope and then Fourier analyzed to obtain the power spec-
trum. This experiment provided the first evidence for SR in a phys-
ical system other than electronic.

Though some carly authors and MW as well performed digital
simulations by integrating an appropriate stochastic dilferential
equation, the most recent tests of the modern theory have been
provided by analog simulators. These are electronic circuit models,
dcsigned following a particular stochastic differential equation us-
ing modern analog components, for example, voltage multipliers,
dividers, lcganthmlc and antilogarithmic amplifiers etc. [29,30].
Addition of voltages is performed in the usual way with operational
amplifiers. The circuit intcgrates the mimicked differential equation
by collecting charge on a capacitor in the feedback path of an
operational amplifier. An cxample clectronic simulator of over
damped motion in the standard quartic potential is shown sche-
matically in Fig. 2. The two components shown with crosses rep-
resent voltage multipliers. The minus sign indicates an inverting
operational amplifier, and the summer adds all the inputs to form
the voltagc cquivalent of the right hand side of the differential
cquation shown. Integration in time then computes x(f), which
closes the loop on the circuit. The feedback capacuor and the input
resistor of the integrator define the integrator time constant 7,
which establishes the time scale on which the simulator operates.
As shown in Fig. 2, the circuit is driven by a signal generator which
provides the periodic modulation, and a noise generator [31] which
provides wide band Gaussian noise. A lincar filter between the noise
generator and the circuit model (not shown) produces time corre-
lated noise with correlation function given by Eq. (16) [32]. The
mean square noise voltage £(¢), {¢*(t)) at the output of the filter is
measured with a wide band voltmeter, and the noise intensity is
obtained from (& (1)) = D/x,.

Signal
gen.
—x98 é € stnwt

-] Noise

gen.
N 2 §t)

x

2

z(1) £(1)

Jdt —

T =z—x3 + €sinwt +§.(t)

Fig. 2

A schematic diagram of the analog simulator of the standard quar-
tic potential. The x symbols represent multipliers, the — is an
inverting amplifier, £ is an operational amplifier summing circuit,
and the integrator, shown by jdt, is an operational amplifier with
an input resistor R and a feedback capacitor C which result in a
time constant 7, = RC. The stochastic differential equation of the
motion is shown below

The time dependent voltages x ), and 16 sume wases A (), are then
passed tu an analog-tu-digital wavertor (ADC). After digitizing,
these Lme scries are then stored in o computer and processed. A
number of uantitics, and theut visemble averages, van be obtained
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frofi- these data, only two- of which aré discussed heré: the power

o ‘ spectrum -and.the.residence:time probablhty densxty

Typlcally, 2000+ dlgltlzed points are obtained. in-a single time
séries by-opening the gate onthe ADC at a fandom phase.of the

‘periodic. modulation. The power spectrum and/or probability den-

sity-are-computed-and.stored for averagmg Perhaps:10.000 such

- operations .are. performed, each time. openmg the ADC gate at.a.

random. phase. In this way the final result is obtained as an average
over the‘phase of the. modulation. Example data are shown in Fig.
3..In Fig. 3(a),.an example time series, x(f), is'shown as digitized
directly from:the- ‘circuit model. Note thaf this represents the com-

.plete.dynamics, The switching behavior between the two wells is

evident as well as the intra well motion. A sample of the. periodic
modulation is shown in Fig, 3(b), and the final, averaged power

‘spectrum:is shown- i (c). Note the Lorentzian noise background,

the delta-hke peak at'the modulation frequency and the small 3ed
harmdpic peak

Fig.3

Example data from the analog simulator, showing (a) a digitized
time series x(t); (b) the periodic modulation; and (c) the power
spectrum averaged from many samplés of time serics. The width of
the signal peak is determined completely by the bandwidth and
frequency resoliition of the measuring and Fourier transforming
systems

In order to study the two state model or to measuit the prob-
ability density of residence times, it is necessary to eliminate the
intra well motion by replacing it with a constant, say one volt. This
is accomplished by connecting the output if the circuit to a voltage
comparator whose output voltage obeys the following logic:

_ 1l x>0
Soome = i x() <0. 7

An example of the comparator output is shown in Fig. 4 (a). The
residence times, 7}, for the right well (Xyuone = + 1) are shown.
Fig. 4 (b) shows an example of the measured probability density of
residence times for a modulation frequency of f; = 2 kHz. Note
the first maximum located at 7y/2 = 1 ms and the successive peaks
at odd multiples of To/2. We note m passing that, while the power
spectrum 1s the almost umversally accepted tool of choice for hat-
monic analysis, the restdence ume probability density certainly ex-
hibits a distinctive charactetistie structure and 1n sume applivations
may be more suitable. Indeed, Fletcher, Haviin and Weiss [331 have
found this quantity most useful in studies on random walk prob-
lems. Further, we note that if converted to frequencies, these puaks,
except for the first one, would be subharmonics of the fundamental
frequency. Yet, in spite of careful, preuision searches, no such sub-
harmonics are observable in the measured power spectra. We con-
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Fig. 4

(@) A time scries measured after connecting a voltage comparator
at the output of the analog simujator, The simulator dynamics thus
mimic the two state mode]’ The sequence of residence times,
To, Ty ... Ty, are determined for onc well only, n this example the
well located near + 1 volt. (b) An example of a measured proba-
bility density of residence times assembled from many samples of
the time series. In this example the modulating frequency was 500
Hz so that the half period, T /2 = 1 ms, Note the sequence at odd
multiples of Tp /2

clude that the scquences of peaks in the residence time probability
density and in the power spectrum are unrelated except that they
both reflect the inherent symmetry of the standard quartic potential.

The particular circuit shown in Fig, 2, and the example results
of Figs. 3 and 4, are for over damped motion in the standard quartic
potential, many other models are possible as discussed in Ref. [29]
including also cases of inertial motion with arbitrary damping. A
recent example is the noisy Hopficld neuron as discussed in Ref.
[25]. In every case, the simulators were constructed following the
principles outlined here.

4. Some Results

In this section, I will present some further data for comparison
with the theoretical predictions. First, the SNR data for the case of
¢ = 0.4 and f, = 50 Hz using the standard quartic, over damped
dynamuics specified by Eqs. (8) and (9) are shown in Fig. 5. The
asterisks are the measured SNRs and the solid curve is the caleu-
lated result from Eg. (10). The plus signs show the behavior of the
noise bachground amplitude measured from the power spectrum
at the modulation frequency. These are plotted on the vertical scale
in decibels using the standard defimtion. amplitude in db =
logSNR. We see that the location of the maximum 1s predicted by
the approaimate relation with reasonable accuravy Since Eq (10)
15 valid only for small D, it is not surprising that the agreement
seems fo break down at larger auise intensity An inaveuracy in the
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plotting Toutine, accounts for the apparent discrepancy near the
.origin.
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Fig. 5

An example of stochastic resonance. The vertical scale is the SNR

in decibels. The asterisks are the measured results, the curve is an

approximate theory and the plus signs are the values of the noisc

background measured at the modulation frequency
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(@) A measured probility density P(x), in the absence of modulation
for the asymmetric potential. The well near —1 volt 15 the more
stable. (b) The power spectrum measured for the asymmetric po-
tential, showing the usual sequence of peaks at the odd harmonics
as well as a weaker set of peaks at the even harmonics

Next, the effect of the 53 mmetry of the potential on the sequence
of peaks in the power spectrum can te investigated. The symmetry
of the standard quartic can be destroyed by adding a small cunstant
force ¢:

Ux,t) = —%xz +—E-x"—-scoswot+qx. (18)

The effect of g can be illustrated by setting ¢ = 0, applying the
noise and sxmply measurmg the stationary probability density P(x).
An example is shown in Fig. 6(a) which shows that we have lowered
the left well at x = —1 V and raised the right-hand well. If the
modulation is now switched ong (¢ # 0), then a power spectrum as
shown in Fig. 6(b) is obtained. We note the usual sequence of
stronger peaks at.fo = 50 Hz and'its odd multiples. In addition,
there arc now weaker peaks at the even harmonics. This clearly
demonstrates the symmetry arguments made by Hinggi and Jung

[18].
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Fig. 7

(a) Two power spectra, onc of the noise alone (dotted curve) and
the other of the modulation plus the noise (solid curve). Note the
decreased noise background when the modulation is present. (b)
The mtegrals of the data shown in (a), where the dashed curve is
the noise alone and the solid curve is the noise plus the modulation.
The two curves converge at high frequency indicating that the total
power in each spectrum is a constant

Finally, the constancy of total power in the noise and signal
spectra can be demonstrated as shown in Fig. 7. First the noise
spectrum alone is measured by setting ¢ = 0. This is shown by the
dotted curve in Flg 7(a). For all the same experimental conditions,
the modulation is now switched on as shown by the sold curve
with the familiar signal peak. Note that the noise background has
been suppressed by the modulation. The magnitudes of the total
powers can be displayed by digitally intcgrating the data of Fig.
7(a). These curves are shown in (b), where the solid curve is the
result with the modulation present and the dashed wurve 1s the noise
alone. The two curves converge at hugh frequency indicating the
same total power. This result Jearly demonstrates the total power
prediction of MW in Ref. [16]. It is, however, true only for the two
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state'model;-and can only be obtained from the simulator with the
voltage.comparator on the output.
We:how turn to. the:probability density. of residencetimes, the

. adiabatic theory of which was developéd.in Ref. [22]. This prob-

ability density, was assembled inthe usual:way from the 7; obtained
from measured time series as shown, for example, in:Fig. 4. A result
calculated froin the theory-of Ref. [22] is shown in Fig. 8(a), where
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(a) A P(T) curve and its mean (dashed curve) calculated from the
theory of Ref. [22] for D = 0.03 and ¢ = 0.2. (b) a measured P(T)
curve for the same conditions from the analog simulator. The data
are plotted on a semi logarithmic-scale in order to illustrate the
near exponential decay of amplitudes. (c) Calculated results for
D =005, and (d) measured for the same conditions

the dashed curve is a calculation of the average density and is a
near exponential; This property is further illustrated by the data,
measured for the same parameter values, shown in Fig. 8(b), where
P(T) is plotted on a semi logarithmic scale. The straight dashed
line illustrates the near exponential decdy of the amplitudes as
measured on the analog simulator, The slope of the dashed line is
a strong function of D, Fig. 8(c) shows.the theoretical results for a
larger value of D, and the corresponding measured result is shown
in (d). There is a small discrepancy between the calculated and
measured slopes. This derives from an inherent uncertainty in de-
terminations of D from the analog simulator near the white noise
limit.

5. Discussion

In this paper, I have reviewed the development of the
theory of SR and summarized the modern results. In par-
ticular, the striking predictions related to the symmetry
properties of the potential have been clearly demonstrated
by the analog simulations both in the frequency domain, by
measurcments of the power spectra, and in the time domain
by measurements of the residence time probability densities.
Moreover, the constant total power property of the two state
model was also demonstrated by direct measurements. It
should be noted that SR can occur in any bi- or multi-stable
potential, possibly in more than one spatial dimension as
well, It has only been demonstrated, however, for the stan-
dard, one dimensional quartic and for a single Hopfield
neuron potential. It is likely that SR will find further appli-
cations if the theory can be generalized to networks.
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1. Introduction

Activation processes in bi- and multistable systems play
an important role in many fields of physics and chemistry
such as optical bistability [1], tunnel junctions [2] and
chemical reaction kinetics [3] to quote but a few. The com-
mon situation is a dynamical system with at least two basins
of attraction. Fluctuations provide the possibility of crossing
a basin boundary and thus give rise to escape events, The
statistics of barrier crossings has been discussed in terms of
escape rates in the celebrated paper by Kramers [4], and
subsequeitly in a large number of publications [5]. More
recently, the role of additional periodic driving, modeling
the influence of periodic external fields, has been considered
in a number of experimental and theoretical investigations
{6]. In the low friction regime, the dynamical system has
been transformed to action angle variables, yielding under
the assumption of regular deterministic motion a time ho-
mogeneous Fokker-Planck equation in action or equiva-
lently in energy space [6a,f]. The overdamped limit has been
considered recently by one of us for a quartic double well
potential [7]. In the regime of small and large driving fre-
quencies, approximation schemes have been derived [7]
while, thus far, in the intermediate regime only numerical
‘results are yet available.

In section 2 of this paper a general concept for escape
rates in periodically driven systems is presented. In section
3 the particular model, Brownian motion in a washboard
potential, is introduced and the equations of motion arc
discussed. The connections between escape rates, mobility
and the diffusion coefficient in the overdamped limit are
derived within a jump model in section 4. In section 5, the
enhancement of the escape rate due to periodic forcing is
computed as a function of the driving amplitude and fre-
quency in the overdamped limit.

The static current voltage characteristics, i.c. the averaged
velocity as a function of the bias, is known to exhibit Shapiro
steps. In section 6, the dynamical current voltage charac-
teristic, i.e. the averaged velocity as a function of the driving
amplitude, is evaluated. The observed dynamical behavior
is surprisingly rich and includes besides steps, which are
closely related to Shapiro steps, also oscillatory behavior.
One main difference to the static current-voltage character-
istic is that the averaged velocity can also decrease with
increasing driving amplitude.

2. Basic Concept

In this section a general concept for escape rates in sys-
tems with periodic forcing is presented. For the following
discussion we assume that our problem is stated in terms of
a set of Langevin equations
i=12,..,n,

X = (e, %2,.005%,) + &) (2.1)

where the set {x,} denotes macrovariables, h,(xy,...,x,) are
the force fields acting on x, and ¢, are Gaussian white noise
forces, i.e.

&G@y =0
&) &) =2D6;0(t—1).

2.2)

The dynamical system without noise is assumed to have two
coexisting basins of attraction, 4; and 4,. Under the influ-
ence of noise, the systems can cross the basin boundary and
can thus escape from one basin of attraction to the other.
Injecting particles in A, and absorbing them in the neigh-
boring attractor A, (by appropriate use of reflecting and
absorbing boundary conditions [3]) a stationary flux S;2(x)
over the basin boundary 9(A4;,4,) between A, and A, builds
up. The escape rate from 4, to A4, is then given by the ratio
of the total flux over the basin boundary and the total pop-
ulation in Ay, i.e. [8]

M= f dx" n() S/ dx" p(x). (2.3)

Ay, A2)

In the weak noise limit, i.e. D—0, the rates are connected
to the smallest non-vanishing eigenvalue A, of the Fokker-
Planck equation, corresponding to (2.1, 2.2), by

Awin = 4t (2'4)
In periodically driven systems, e.g.
X = (X, X200 %) + O A sinQt + &,(0), 2.5)

i=12..,nand ke[l,n],

there is no stationary structure of attractors in the phase
space, spanned up by the variables x;. Thus, the flux-over-
population method cannot immediately be applied. Time
dependent escape rates, defined as momentary rates have
been discussed in the literature [9]. As a consequence, the
decay of the population is non-exponential [10]. The latter
conception is therefore questionable. In the following we
introduce a concept which results in time independent es-
cape rates and in exponentially decaying populations.

In a first step we extend the phase space to n + 1 dimen-
sions by introducing the additional variable O=Qt + ¢.
Escape rates are now defined in the same way just as in the
stationary case, but now in the extended phase space. Par-
ticles have to be injected into and absorbed out of the rel-
evant attractors in the extended phase space. The resulting
stationary flux has to be integrated along the basin bound-
ary of the extended phase space. Since the integration of the
flux along the basin boundary involves also an integration
over the additional variable O, the total flux and thus also
the rate is time-independent [7,11]. The smallest non-van-
ishing cigenvalue A&, of the Fokker-Planck equation in the
extended phase space is connected in the limit of weak noise
to the escape rates 72 and /™ evaluated via flux over pop-
ulation method in the extended phase space by
2 = R, (2.6)
The eigenvalues of the Fokker-Planck equation in the ex-
tended phase space are indentical with the Floquet-coeffi-
cients of the non-stationary stochastic process in n dimen-
sions [7,11,12] (described by the Fokker-Planck equation
corresponding to (2.1) without extending the phase space).
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Thus, the escape rate:of-the periodically driven stochastic
- procéss (2,5) is-also given by the smallest:non-vanishing Flo-
quet-coefficient of the corresponding time inhomogeneous
Fokker-Planck equation.

In one dimensional bistable-systems, i.e. n=1, the ex-
tended phase space is the two-dimensional x — @-space. The
‘basin boundary. is the unstable periodic orbit, i.e. 9(4;, 42)
is a one-dimensional object in x—6-space; In two-dimen-
sional problems, such as the Kramers’ problem with periodic
driving, X =v, v =-yv +f(x) + AsinQt + £(t), the extended
phase space becomes three-dimensional and the basin
boundary is an object which is two dimensional below hom-
oclinic threshold.(regular motion), and a fractal above hom-
oclinic threshold (irregular motion). The eszape in the latter
case is connected with the flux through a fractal basin
boundary. While the regular regime has been treated in the
‘weak damping limit within an energy diffusion equation as
mentioned in- the introduction, the.irregular regime is not
yet solved.

3. The Model: Equations of Motion
The (tilted) one dimensional-washboard potential

V(x) = —dcosx — Fx (3.4)
is a multistable potential for F < d with minima and maxima
given by

-

. . F
x* = arcsin— + 27n

n=0%1,%£2,..
d

(32)

-

. F
Xyt = g —arcsin— + 2nn

7 n=0+14+2,....

(3.3)

The variable x is dimensionless and can thus be interpreted
as an angle variable (but not necessarily modulo 2n). The
Newtonian equation of motion supplemented by a noise
term, i.e. the Langevin equation, reads:

%45 = V'(x) = Asin(wd) + &), (34)

where dots indicate differentiation with respect to the time
t. The fluctuation-dissipation-theorem of the second kind
[13] is fulfilled without periodic driving, i.e.
CEEEF)) = 29kT8(~T'). 35)

In dimensionless variables, i.e.

T =)dt
y =§//d

A= AN
G =owf)d
D= kT/d
F=Fd
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the Langevin equation (3.4) reads
%+yx+sinx = F+ Asin(Q7) + £(F): (3.6)
with
E@OLE)) = 27D 8(E-T). €Y)]

Here, the dots denote differentiation with respect to #. For
large damping,i.e.y > [/2, the first term on the Lh.s. of (3.6)
or equivalently (3.4) can be neglected, and we obtain

_’a’ti = —sinx+F+Asith+[/5€(t),

(38)
with the scaled time ¢ = (d/$)f = y~!7 and the scaled fre-
quency Q = yQ = (j/d) .

4. Escape Rates, Mobility and Diffusion Constant in the

Overdamped Limit

The stochastic dynamics in the multiwell potential (3.1)
may be modelled by a hopping dynamics between the wells,
In the overdamped case there is only hopping between
neighboring wells, i.e.
By=rtP 41" Poy—(* +r7)P,, @.1)
where P, denotes the probability that the system is in the
p-th well and r* are the escape rates from the n-th to the
(n & 1)-th well, The rates r* and r~ are assumed to be in-
dependent of the site n. In periodically modulated systems
the rates and populations above are understood as those
defined in the extended phase space. The stationary solution
for k-fold periodic boundary conditions, i.e.

}

Pn+2nk = Pn (42)
is the uniform distribution
P = 1/k. 4.3)

The mean velocity is given by the product of the stationary
flux (r* —r~) P* and the length 2nk, i.e.
@) =200t —r7). (4.4a)

The mobility, defined by the ratio of the mean velocity {v)>
and force F then reads

@ _om

7 2 r*=rT). (4.4b)

The diffusion coefficient can be obtained from the first and
second-order moments <{n(t)> and {n*(1)) of the master
equation (4.1)

@) = F+r)e+ 0t =)t

) = ¢+ =)t )




s

ST

3

-The second’term on‘the r-his. of the first equation-of (4.5) is
A transport-term.and vanishes ‘for zero:bias, while:the first
térifi. on:the-f:h.s. of (4.5) is a diffusive teri. The diffusion
coefficient Dy, defined:by

d

Dar = 5 () — <O “9

is'given by

Da = ‘;‘<55r)’3‘1—(<n?(z)>~—~ (MOY) = 25+ + 7).
; @)

In theé weak noise limit, the escape rate is connected with
the smallest non-vanishing eigenvalue of the Fokker-Planck
operator corresponding to (3.8) in the extended phase space.

A délicate problem, however, is the choice of the boundary
conditibnscfor the Fokker-Planck equation. Using simple
‘periodic boundary conditions, i.e. P(x,0,t) = .P(x + 27,6,1),
the potential is not bistable in the interval [0,27]. The out-

going flux at one boundary is identical with the incoming,

flux at the other boundary. Thus, the population in the well
is not decaying and the smallest non-vanishing eigenvalue
has not the meaning of an escape rate. Using two-fold pe-
riodic boundary conditions, i.e. P(x.0,f) = P(x +4n,6,t),
the potential is bistable in [0,4n]. Thus, the population in
one of the wells may decay, and the smallest non-vanishing
eigenvalue 4., is connected with the escape rates r by

Ain = 2(r* +17). (4.8)

Using n-fold periodic boundary conditions, i.e. P(x,0,t) =
P(x +2rn,0,1), additional branches of eigenvalues emerge,
being connected with relaxation processes between not-ad-
jacent potential wells, The situation can be understood in
terms of a Bloch theory. A periodic force field in space x
provides eigen-solutions of the Bloch-type,

W (x,0) = explikx) ub(x,0) (4.9a)
with

ub(x +2m,0) = uk(x,9), 4.9b)
where the quasi continuous index k may be restricted to the
first Brillouin zone (Bz), i.e. —1/2 < k < 1/2 (in the sym-
metric choice). In Fig. 1 a typical band structure is sketched
for illustration. The other index ¢ numbers the eigenvalues
for a given value of &, i.e. is the analogue to the band index
in solid state theory. Simple periodic boundary conditions
restrict the possible values for k¥ to k=0, while two-fold
periodic boundary conditions allow for k =0, &1/2. n-fold
periodic. boundary conditions select as possible values
ky=0, +1/n, 42/n,... with |k,| < 1/2. The relevant eigen-
value for the rate, however, is only the smallest non-vanish-
ing eigenvalue at one of the boundaries of the first Bz, al-
though there are smaller eigenvalues within the first Bz
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Note, that for (27 +1)-fold periodic boundary conditions,
the-Bz boundaries:k = +1/2 are not allowed values. There-
fore, for. this choice of' boundary.conditions the rates are not
coninécted via (4:8) fo eigenvalues! -

X0

-112 0 k 1/2
Fig. 1
A typical reducéd band structure for the eigenvalues of a Fokker-
Planck .equation with a periodic potential is shown. Two bands

o=1 axd o= +2 are plotted within the first Brillovin zone
ke[—1/2,1/2]

The individual rates r* may be obtained by using (4.4b)
and (4.8), i.e.

A uF
E I TN il .
r 2 + an (4.10)

For symmetric potentials (F= 0) the rates r* are obtained

from the eigenvalue A.;, only, while for tilted potentials

(F #0) it is necessary to compute also the mobility.
Finally we note that the diffusion coefficient D,y in (4.6)

is connected to the eigenvalue A, by

Dy = nzlmin . “@.11)

4.1. Results for the Unperturbed System (4 = 0)

Here we briefly review on the results without periodic
driving. In Gaussian approximation the rates are given by

[14]

r¥ =-21—n|/1—erxpl:-—%($F+2FarcsinF+2|/1 —Fz)].

4.12)

The total rate out of a potential wel! is then given by
rp=r¥4r"

1 5 2 .
== V/1— Fexp [-— ) FarcsinF 4.13)

2 5 Fn
o) 1—-F:|cosh( 5 >



e AR M - o~

T '\‘3

'In (411 2) and (4 13) the normalization of (3.8) has been used.

The: mobility is obtained from (4.4b), i.e.

o= Z ~1»—‘Fi’eX’p[—- -72'-1" arcsinF

F D (4:14)

Fr
7 | cinh 2T
1-F ] smh( D ),

while the diffusion coefficient Doy is given by

: 2
Da=2n)/1=Fexp [-—- — FarcsinF

L D 4.15)

I‘ Fr
—1/1 — F? e
1-F ‘COSh( D ).

" 5, Escape Rates for the Periodically Forced System in the

Overdam'ped Limit

T‘*c Langevin equatlon (3.8) in the extended phase space
reads °

% = —sinx £F+ Asin0 +&(t) (5.1)
0 =0,

Without.noise, the-unstable periodic orbits for small 4/Q*
may be obtained by linearization around the unstable fixed
points, i.e.

Xol®) = ®(2n+1)—~arcsin F
(:2)

V = [ (]/ = )]
+ ———=——=sin| —arctan|{ ———11,
1—F 4 Q° 1-F

where n = 0, &1, +2,... The stable periodic orbits for small
AfQ? are obtained similarly and are given by

x4(6) =2nn + arcsinF
(5.3)

4 sin (0 —arctan (—Q——»
VI-F+@ N\ VI-F/)

In Fig. 2, the x— 0 phase space (x € [—n,3x], 0 € [0,2n] is
shown with numerically evaluated stable and unstable pe-
riodic orbits without bias {F=0) for 4=0.5. The unstable
periodic orbit divides the phase space into two basins of
attraction. The basin boundary becomes for large frequen-
cies 2 or small driving amplitudes 4 a straight line. The
escape rate is given in terms of the smallest non-vanishing
real eigenvalue A;,(4,Q,D) of the Fokker-Planck equation

0 0 .
m P(x,0,t) = B (smx+ A smf)) P(x,0,t)

0 P(x,0,0) (54)

a P(x,()t)-!-Da >

= Lp P(x,0,1)
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for periodic boundary conditions in 6, i.e. P(x,0,t) =
P(x,0 +2=,t) and two-fold periodic boundary tonditions in
x, i.e, P(x,()t) = P(x+4n,0,1). More generaly, the full
band-scheme for the eigenvalues A, (k) is obtained from the
boundary value problem

[2, (k) + Dk?*] uk(x,0)- =V[LFP +ik(sinx + A sin6) 59)

-
+ 2iDk ax:lu.,(x,())

with simple periodic boundary conditions-for u (x,6) in 0
and x and k € [—1/2/2]. As already mentioned éarlier,
Amin is identical with 4. (k= 1/2).

basin 1 basin 2
6.28 7, S \\u S |‘
\
\
4-71 "‘ “ 3
- :
8 . |
3.14 4 ! o
v ]
]
:' 1
1.57 + 'I '4
| i
i |
] i
0.00 4 . ‘l L) -4
-3.14 0.00 3.14 6.28 9.42
X
Fig. 2

The stable (full lines) and unstabledashed lines) periodic orbits are
shown in the x — 0 phase space, The unstable periodic orbit close
to x = m separates the phase space x € [—m,3n] into;two basins of
attraction. The attractors are the stabie periodic orbits {({imit cycles)
in the x~ 0 phase space

The numerically evaluated rate enhancement (4,92, D)
due to the periodic driving, i.e.

MA4,Q,D)

n(42.0) = 0 =0D)

-1 (56)

is plotted in Fig. 3 as a function of the amplitude A4 for
different values of the driving frequency in a double loga-
rithmic plot. The straight lines for small A with a slope of
2 clearly indicate the law

1(4,2,D) = k(Q,D) A® (5.7

being valid for small driving amplitudes A. In Fig. 4, the
rate enhancement factor k(, D) is shown as a function of
the driving frequency Q for variovs values of the noise
strength D in a double logarithmic plot. For small @, the
factor k reaches a certain plateau, while for large Q the rate
enhancement factor exhibits a decrease oc Q-2
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1075 4
1072

e aam wdum Py TS 'v R - .~ - B

107! 10°
A

Fig. 3

The raté enhancement 7(4,9) is shown as a function of 4 in a
double-logarithmic plot for 2 = 0.1, 2 = 1 and @ = 5, The power

‘Jlaw for small 4 is evident

102 A
D=02 -
10" 9=
D=0.5
100- ) D=1-0
K
107! 4
102 N
10" 4= ' . T
10°° 102 10™! 10° 10!
Q
Fig. 4

The rate enhancement factor x is shown as a function of the driving
frequency Qfor D = 02,0 =05and D = 1

102 | i | e
10' 4
K
10° 4
1071 4
1072 r r :
10°° 102 107! 10° 10’
Q
Fig. §

The rate enhancement factor x is compared with the theoreticai
results (5.9) and (5.10) at D = 0.2 for small and large dniving fre-
quencies.

Both limits, 2-small and- Q large, can be described ap-
proximately. For small fréquencies Q < wpopping an adiabatic
approximation [7] yields

n(4,Q,D) = I(An/D)-1, (5.8

‘where Iy(x) is a-modified Bessel function [15]. For A/D—0

one finds approximately

k(Q,D) = 772— ~ o (59)

The crux with the adiabatic approximat.on is that with small

‘noise strength it is valid only for exponentially small driving

frequencies.
In the high frequency limit the averaging method of Ref.
7 yields for the rate enhancement

N4,QD)~ w+— (5.10)

Both limits (5.9) and (5.10) are ¢ompared with the numerical

results for D = 0.2 in Fig. 5.

We do not discuss individual rate r* or r~ in the presence
of bias (F # 0), since the effect of periodic driving is the same
as in the symmetric case (F=0). We want to point out,
however, that they can be obtained by computing the av-
eraged mobility ; and the relevant eigenvalue 4.y, and by
using .(4.10). The effective diffusion coefficient Dy (4.6) is
connected with the relevant eigenvalue A, by Eq. (4.11)and
thus exhibits the same dependence on-the driving frequency
and amplitude.

6. The Dynamical Current-Voltage Characteristic

The current-voltage characteristics of the model (3.8), i.e.
(&) (= voltage) as a function of the bias F (= current) has
been discussed in the context of Josephson junctions [16],
phase locking in electric circuits [17] and mode locking in
ring laser gyroscopes [18]. The periodic driving gives rise
to steps which have been observed first by Shapiro [19] in
Josephson junctions. In terms of the model (3.8) without
noise, these steps occur when the periodic output xt)
“locks” into the phase of the periodic driving. The locking
condition is fulfilled when the period 7= 27/Q of the driv-
ing is a multiple of the time T, the system needs for running
down the tilted potential one period L =2, i.e. when

X =nQ, 6.1)

where (%) is the averaged velocity along one spatial period
2x. The influence of noise consists in rounding the steps or
destroying them if the noise strength is sufficiently large.
Characteristic is the stepwise but monotonous increase of
the voltage with increasing current F.

The dynamical current-voltage characteristic will be de-
fined as the voltage (%) as a function of the driving am-
plitude A. Without noise, such a dynamical current-voltage
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characteristic is -shown in Fig. 6a for F=0.8 and Q=1
(dashed lirie). The voltage vanishes for A'< A", since the
system cannot overcome thebarrier. At A= A" the system
jumps into a running state, and is locked into the phase of
the periodic driving in the locking regime n=1 (see Eq.
(6.1)). For A®> A > A9 the locking conditions cannot be
fulfilled (for an explanation see below) and the voltage drops
down. The locking conditions are fulfilled only on discon-
nected intervals of the, A-axis, and the width of the locked
tegions decreases for increasing driving amplitudes 4. For
very large values of 4, i.e. A—oc, the locking condition
cannot be fulfilléd any more and the voltage relaxes oscil-
latory to its asymptotic value (x> = F. The influence of
noise (full line in Fig, 6a) results in rounding off the plateaus
in the phase locked regions and finally in destroying the
.phase locking for large driving amplitudes.

A (1)A(2)A(:2)_ .
1.2 - '
\1.0- "j

084 _ :

é 0.64 | -
0.4+ o
0.24 s
0.0 r - T

0 5 11 16 21
A
Fig. 6a:

The dynamical current-voltage characteristic ({v) = {x))is shown
for F=0.8 and Q = 1 without noise (dashed linej and with the noise
strength D =0.01 (full line)

1.0 1 1 [ 1

0.8+

% 0.6+

0.44

0.24

0.0

-
-t
-

0 2 4 6 8 10
A

Fig. 6b:

The dynamical current-voltage characteristic ({(v) = (%)) is shown
for F=0.5 and = 1 without noise (dashed line) and with the noise
strength D = 0.01 (full line)

In Fig. 6b the dynamical current voltage characteristics
is shown for the smaller bias F=05: Here are no phase
locked regions at all. The locked regions are estimated with-
out noise in the following [20]. For convenience we choose
a cos-driving in the equation of motion, i.e.

X = —sinx+AcosQt+F. 6.2)
Inserting the ansatz

A !
x(t) = xo + Estt + (Xt 6.3)
into (6.2) we obtain
@=F= L KADsinfro+*2+D)N)  (64)

from which (%) follows self consistently. In (6.4) J; (x) are
Bessel functions [15], and xo is an arbitrary phase, In the
phase locked regions we find by using (6.1) and averaging
over one, period the conditions for locking into the n-th
region, i.e,

F—nQ = J,(A/Q) (—1)" sinx, . (6.5)
For the 0-th region ({x) =0) the condition F = Jy(4/W)
sinxg has to be fulfilled, The solution is discussed graphically
in Fig. 7 for F=0.8. It follows from Fig. 7 that for 4> AW
there is no xo which makes the ‘ocking condition for n =0
fulfilled. For 4> A", however, e condition (6.5) for n =1
can be fulfilled and the system locks into the n=1 region,
At a certain value of 4 = A® the condition (6.5) for n=1
can not be fulfilled any more and the locked regime
(x> =2Q(n = 2) cannot be reached for Q = 1. Thus, the sys-
tem cannot lock to the external signal and the voltage {(xX)
shows oscillatory behavior as a function of the driving am-

1.20 % Il 1 Il -
A7)

0.78 E_1

\ (A/Q)

0.354 | ¢ sol
¥ ‘ / \
|

0.07- \ \ / \\/ /\/'

-0-509 4i 12 16 20
A A(z) A A

Fig. 7

The functions Jy(4;2) (full line) and Jy14,Q2) (dashed hine) are plot-
ted together with the straight lmes F, F—Q and Q— F. The hight
regions of the stripe on top of the curves indicate phase locked
regions
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plitude. Due to the-oscillatory behavior of the Bessel func-
tions, the locking condition for n = 1 can be fulfilled again
in a number of intervals of larger A. It is obvious from Fig. 7
that the width of the locked intervals decrease for increasing
values of the driving amplitude A until the Bessel functions,
which decay asymptotically proportional to 4A='?, are too

small for locking. Note, that the agreement ofithe numerical.

values A9 (Fig. 6a) with those obtained 'from the theory
becomes better for increasing driving amplitudes.

1'2 < 1 ] [l ' 1 ' -
1.04 S
0.8+ 5
e 0.6' -
0.44 L
0.2+ o
0‘0 : .l L L3 1 LJ L) L]
0 1 2 3 4 5 6 7 8
A
Fig. 8

The dynamical current voltage characteristic with an inertia term.

(model (3.4)) is shown for F=0.5,I=1and y=1.

The dynamical current-voltage characteristics for systems
with inertia (the model 3.4)) is even more rich, since it allows
also for subharmonic phase locking, i.e.

m

) = - Q mneN. 6.7

The numerical results for F=0.5, & = 1 and y = 1 are shown
in Fig. 8 for vanishing noise. The voltage {x) as a function
of the driving amplitude shows besides the steps also regions
with wild oscillations. These oscillations occur with chaotic
solutions.

7. Conciusions

In this paper we have presented a concept for escape rates
in periodically driven systems. For a periodic (multistable)
potential we have derived explicit results for the escape rate
as a function of the driving frequency and amplitude. The
relations between rates, mobilitiy and diffusion coefficients
have been discussed as well as the role of boundary condi-

tions. In addition we have presented dynamical current-volt-
age characteristics, i.e. (X} as a function of the driving am-
plitude A. The observed rich dynamical behavior has been
explained in terms of phase locking;

We are grateful for the financial support by the Stiftung Volks-
wagenwerk, We wish to thank Peter Talkner for hclpful discussions
on rate theory.
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Dynamics of Multidimensional Barrier Crossing in the Overdamped Limit
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Two methods for numerical solution of multidimensional diffusion problems are presented and applied

to the two dimensional barrier crossing problem in the overdamped limit. One of these methods is based

on cvaluating the smallest non-vanishing eigenvalue of the Smoluchowski equation, and the other is based

on an adaption of Chandler’s steady state correlation function approach. Both methods make use of the

fast Fourier transform algorithm for solving a transformed version of the Smoluchowski equation. The

numerical solutions are compared to results based on the Kramers-theory and some observations con-
cerning effects of the dynamics of barrier crossing problems are made.

1. Introduction

The concept of activated processes provides a common
reference framework for the description of numerous im-
portant phenomena in chemistry and physics, such as chem-
ical reactions in gaseous and condensed phases, desorption
from and diffusion on surfaces, diffusion of atoms and ions
inside solids, dynamics of Josephson junctions and others
[1]. The Smoluchowski equation has been widely used for
describing these and other kind of relaxation processes: [2]
in the overdamped (high friction) regime. In the one dimen-
sional case it takes the following form

d W0 [0, ,dr
—aTP(x.tlx)— D [6x + f—

Py I ] P(x,t|x") M

where P(x,t|x’) is the probability density for finding the
system at position x at time ¢ given that it has been initially
at x', D = kg T/yM is the diffusion constant (ky is the Boltz-
man constant, T is the absolute temperature, y denotes the
friction coefficient and M is the mass of the diffusing par-
ticle), # is the inverse of kg T and V(x) is the potential of
mean force. While one dimensional models are frequently
useful to describe the evolution of a system along ihe re-
action coordinate (namely the minimum energy path be-
tween the initial and final states) motion in directions nor-
mal to the reaction coordinate may have significant dynamic
consequences [2—13].

In this paper we discuss methods for the numerical so-
lution of the multidimensional analog of Eq. (1), and apply
two such methods to a two dimensional barrier crossing
problem. Multidimensional effects on the dynamics of bar-
rier crossing processes have been subjects of several studies
lately [2—12]. Several issues, such as the effect of diffusion
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in directions other then the reaction coordinate, the effect
of curvature of the reaction coordinate and the effect of non-
isotropic diffusion, are of interest. A numerical algorithm
based on the use of fast Fourier transform (FFT) for solving
the diffusion equation was recently presented by Agmon and
Kosloff [12]. Approximate methods based on time depend-
ent self consistent field approximations were investigated by
Kaufman and Whaley [14]. In the present work we describe
an improved FFT method, where by transforming the orig-
inal Smoluchowski equation to a Schrodinger-like equation
(climinating the first order spatial derivatives) we are able
to use the analog of the Fleck and Feit split order propa-
gation scheme [15] rather than the finite difference method
of Kosloff and Kosloff [16]. Moreover, we focus on the
barrier crossing rate, and apply the numerical technique to
directly evaluate theoretically based expressions for this rate
rather than trying to extract it from the resulting time ev-
olution. Finally we use our results to discuss several issues
associated with barrier crossing problems as mentioned
above.

Section (2) of this paper describes the numerical method.
Section (3) describes the application of the numerical ap-
proach to the calculation of the rate by solving for the small-
est non-vanishing eigénvalue of the Smoluchowski equation
and by evaluating the saturation-plateau value of
{N(0)N(t)> where N(t) is the population in the reactant well
at time ¢. Application to a particular two dimensional model
is described in Section (4). Section (5) presents and discusses
the numerical results for a model two dimensional system.
We conclude in Section (6).

2, Numerical Solution of the Diffusion Equation

The multidimensional version of the diffusion equation
(Eq. (1)) is

% P(xt|x) = VTI-D - [V+ V(BV(x))] P(x.t|x) V)]

where x denotes a vector in the multidimensional configu-
ration space and D is the multidimensional diffusion tensor.

WUS-9021,91,0303-0319 8 3.50+.25,0
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D is assumed.to be constant (namely independent of posi-
tion):buit not necessarily isotropic.
-A-formal solution to-Eq. @ 1is

P(x,t|x’) = exp(Lf) P(x,t =0]x") 3)
where
L=vV"D[V+V({@BV()]. @)

An exact solution to Eq. (2) cannot be obtained inthe gen-

erdl case. The FFT method for solving time dependent prob—

lems associated with linear partial differential equations has
been recently shown by Agmon and Kosloff {12] to be very
useful for’solving the Smoluchowski equation, The simplest
time propagation. procedure is based on a first order differ-
ence scheme, namely

P(x,t+ Atlx') = P(x,t|x')+ AtLP(xtlx)+O(A8). ()

The 2nd order scheme used for Schrédinger equation is not
stable in the present case. Agmon and Kosloff [12] have
usedt an expansion of the evolution operator in Chebychev
polivomials [16b]. Another convenient algorithm can be
obtained in principle by working with the exponential prop-
agator defined in Eq. (3), in the spirit of the split operator
method of Feit and Fleck [15]. However since the operator
L contains coupling between x and V it is not possible to
split exp(L A ) (for small A t) into a product of exponentials

“which depend either on x or on 0/0x as is done in the

quantum mechanical case.

There exist a transformation [17], which allows to de-
couple the position from the gradient operators, thus mak-
ing it possible to use the exponential propagator without
the need to linearize it. Let P.(x) denote the equilibrium
solution of Eq. (2) and define -

P(x,t]x")

VP

Then it is easy to show that the function ¢ satisfies a Schro-
dinger like equation

O(x,t]x) = (6)

0
—a—t—tb = —H¢ ™

where the “Hamiltonian™ H is
H= -V"-D-V+ U(x) ®)
and the “effective potential” U is
Ulx) = VT (BV/2)-D-V(BV/2)— V! -D-V(B¥;2). 9)
To obtain these results-t has been assumed that the diffusion
tensor is symmetric (i.e.,, D = D7),

Let {p,(x)} and {2,} respectively denote the sets of (nor-

malized) eigenfunctions and eigenvalues of H. The Green's
function associated with Eq. (7) is given by

o

P(x,t]x) = "Z:o @n(¥) exp(—2nt) on(x). ° (10)

Since H is real and symmetric its left eigenfunctions are
identical to its right eigenfunctions ¢, (x) = {n|x) = {x|n).
This.is in contrast to the operator L whose right and left
eigenfunctions are not identical, Denoting the latter by v, (x)
and 5 (x) we have

tpn(x) = @, (x)* l/ Pc(x) E (113)
v (x) = @u (x)/)/ Pe(x) . (11b)

The corresponding eigenvalues are identical to those of H
and satisfy

A = (on@HI@n () = ()| Llpnx)> 20, (12)

Assuming that the “ground state” @o(x) is nondegenerate,
only one of the eigenvalues, Ay, is zero and all the others are
positive. The normalization condition implies

OIO dx®gy(x) D(x, 2] x)
% (13)

[es]
= | dx®d(x,t]x) golx') = 1
-

where N is the dimensionality.

The problem of solving Eq. (2) has thus been transformed
into that of solving Eq. (7) where the “momentum” terms
(the terms containing V) and those depending on position
are separated. Note that this simple form for the “Hamil-
tonian” (Eq. (8)) is obtained only for position-independent
diffusion tensors.

The time evolution associated with Eq. (7) is obtained
from

@(x,t) = {x|exp(—H)|d(t =0)) (14)
~ <x|l;Iexp(—TAt)-exp(—U AD|D(t =0))

where the “kinetic energy” operator T denotes the term
—~VT-D-V appearing in Eq. (8) and where At=t/n. In
practice, the function @ is defined on a grid in configuration
space. The exp(—T A ¢) operator is carried out by the FFT
technique,

D, Al) & Fres[e7T2 Fr o x 6™V 0(x,0)] (15)

where the two exponential operators appear in their diag-
onal representations in the appropriate space, and where
Fy.- denotes a Fourier transform from k-space to x-space

N2

1
) = FewrJ) = ( ) [ 4k exp(—ik-x)7®). (16)

The choice of the initial distribution requires some attention.
In principle it is possible to make an arbitrary selection but
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itis advaniageous to do it in such a way that the calculation
of the specific observable of interest, e.g., transition rate, is
easier. This point is discussed below.

3. The Transition Rate and the Reactive Flux

 The type of processes which are considered in this section
involve classical diffusion over a barrier, from a potential
well to another region of the configuration space. In partic-
ular we are interested in the transition rate and in the con-
dition for it to exist as a meaningful measure of the reaction
dynamics [17-21]. .
It is convenient to write Eq. (2) as a continuity equation

AP + VT J(x) =0 a”n
where the probability flux vector, J(x,t) is given by
Jx.t) = =D [V+V(BV(x)] P(x,0) . (18)

At & stationary state J(x,f) = J, is a constant, and
P(x,t) = P,(x) does not evolve in time. For closed systems
_ the only stationary state is the equilibrium distribution
P(x), for which J, = 0. The barrier crossing process is char-
acterized by a single rate (for practical purposes) if, following
a short transient period after the initiation of the process,
the system developes a quasi steady state whose time evo-
lution is governed by the smallest non-vanishing eigenvalue
of the Smoluchowski equation and by a nearly constant flux
from the reactant to the product well, Several approximate
methods to evaluate this steady state rate are available:

(a) The Smallest Non-Vanishing Eigenvalue (SNVE)
Methed [18,20]

The existence of a well defined rate implies that 4;, the
smallest non-vanishing eigenvalue of L, is well separated
from the higher eigenvalues (i.e., 4, < (4, = 4;) = 77" and
that this eigenvalue is not degenerate. With this in mind and
for times ¢ such that ;' < t < w the relaxation to equi-
librium is governed by A, which is then equal to the tran-
sition rate K(f).

These well recognized facts can be used within the nu-
merical scheme described in Sect. (2) as follows: Using an
arbitrary initial distribution ¢(x,0) the distribution at time
t is obtained by performing the evolution ¢(x,f) =
e~ ¢ (x,0) numerically. Observing that
0(x.8) = o(x.0) — ¢o(x) 19)
(@o(x) is the state corresponding to the eigenvalue 2 =0)
satisfies

10017 = | 4x10(s.0F = eI~ 1 (20)
the transition rate K(f) is obtained from
1. d 2
K@) = — = lim—In{lo@)*-1]. 1)
215 dt

Alternatively, if the initial “wave function” ¢(x,0) does not
contain the “ground state” ¢o(x) ie, {@ol@©0)) =0,
(this may be achieved, since @,(x) is the known equilibrium
distribution, by the projection ¢(x,0) — o(x,0) —
{po(x)] @ (x,0)) followed by renormalization) then

K(p) = 4 = lim < InClo (1), @)
tyv

(b) Chandler’s Method [21]

A different treatment for the calculation of the transition
rate is based on the fluctuation dissipation theorem. Close
to equilibrium the relaxation process of an observable A(f)
obeys the following relation

AW _

84(0) 84@1)
BAODw '

340

(23)

Where {:+*> and {>*>,, respectively represent an equilibrium
ensemble average (over initial conditions) and a non-equi-
librium one, and 3A(t) = A(f) — {4).

The observable of interest is

N(@) = ‘I) dx P(x,t]x0) (24)

where Q is the domain defining the reactant state and
P(x,t|x,) is the distribution at time ¢ given that initially it
was

P(x,t = 0|xp) = 6(x —xp); X € (25)
where x; is the i-th component of the N-dimensional vector
x and X, is the initial location of the distribution on the
i~th coordinate axis. The reaction coordinate is the minimum
energy path between the reactants and the products poten-
tial wells. However dynamical effects may create situations
in which the maximum reactive flux does not go along the
minimum energy path. This aspect of the problem will be
discussed below in the specific application to two-dimen-
sional diffusion. Define

SN(t) = [ dx[P(x,tlxo) — e F)Q] (26a)
Q

where

Q= T dxe=FV®, (26b)

Assuming that the relaxation of (SN(f)) to its equilibrium
value (i.e, zero) is given by the chemical rate K(f), we find
from Eq. (23)

N Q) N> = <IBNOI*) exp(—K(B)1) 27)
and consequently
CONO) SN (@) = —K(B) KIBNOI?> exp(—K(B)1) .  (28)
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« _1 As discussed above (see-also Ref. [21])for the.process at
‘hand to have a .uniquely-defined rate: constant one- must

consider times such that t < t. < K, Then Eq. (28) implies

GNO) SN @)
[N (O

Thus, evaluating the saturation or plateau value of the r.h.s.
of 'Eq. (29)-(using .the numerlcal procedure of Sect, (2) for
the numerator) yields K(ﬁ) It is obvious that apart from
reasons of numerical accuracy, the procedures based on Eqs.
(20), (21) and (29) should yield identical results,

Ky =

t<'<t<K'l‘ - (29)

(¢).Kramer’s Formula [22]

Kramers has derived an expression for the escape rate out
of a one dimensional potential well in séveral limits asso-
ciated with the magnitude of the friction. For the over-
damped limit governed by the Smoluchowski equation (1)
and for high barriers (Eg > kaT') his result for the rate is

® (W)
w, s Ey
5 exp(— kBT>

where of® and o™ are the vibrational frequencies corre-
sponding to the top of the barrier and to the bottom of the
well respectively and where the potential in these two
regions has been approximated by its expansion up to quad-
ratic terms about these points. For a multidimensional sys-
tem, Eq. (30)-can be generalized by-assuming that the non-
reactive modes are-in thermal equilibrium. Under this as-
sumption the rate takes the form [23]

KR = (30)

w®
KD = 2 ki )

where ND stands for “N-Dimensional” and where Krgr is

the rate obtained from transition state theory

2kgT j‘dx,,,e"”"""""”
Ider d'i'nr e=prm

Kryst = (32)

In Egs. (31) and (32) the subscripts r and nr stand for reactive
and nonreactive coordinates respectively.

4, A Two Dimensional Model

The method described in Sect. (2) has been applied to
solve numerically the diffusion equation in two dimensions,
to compare the Kramers expression (31)) to different nu-
merical ways of evaluating the rate and to examine effects
of multidimensionality on the reaction rates other ther. these
incorporated in Eqs. (31) and (32). The potential surface used
in this study may be written in the form

Vixy) = Vo fo(xy) fu(xy)

where f(x,y) is a quadratic form in x and in y such that
S(x,y) =0 describes the locus of an ellipse. In terms of the
geometrical parameters defined in Fig. 1, f(x,y) is

(33)

Sflx,y) = ( X—% )2 [cos?(6)-+ o sin?(0)]
+ -"—:a-’ﬁ- : l’i—y-"- (1 — ) sin(26) (34)

+ (—y—:d-'@-)z [sin%(0) + o cos*(6)].— 1

where (xo; Vo), @, 8 and o represent the parameters of any: of
the two ellipses f{x,y) = 0. The subscripts R and L (Right
and Left) represent different choices of the parameters. These
parameters are chosen for the two ellipses such that the
saddle point of the potential is at the origin. For the sake
of simplicity we have considered in this article only poten-
tials which are symmetric with respect to the y axis, The
parameter ¥, is the hight of the potential barrier and the
reaction coordinate i.e, the minimum energy path, goes
from one well to the other through the origin. In all the
calculations described below we have taken ag = a, = a,
and have chosen the units of time and length such that a
= D¢+ Dy =1,

In the numerical evaluation of the rate Eq. (22) can be
used as written, but Egs. (28) and (29) may be simplified for
the model considered. The dividing surface s, where the flux
is calculated, is taken as the y axis. By using the symmetry
of the potential V(x,y) with respect to this axis, Eqs. (24),
(25) and (2) lead to

3N(t=0) I dx I dy [3(x — xo)-3(y = yo) — e~ #V¥/Q]

= 0(0) -5 )

where @(x) is the Heaviside function. Also from Eq. (2)

w10 = -5, | ay(Z 4 5 22

ox (36)
* P(%,3,t]X0.Y0)
s =P T quampron O
GNSN(@) = | dye™
T ares o
-0 -0
1
-P(x.y.t|xo,yo)e_py(x°'y°)[@(x(’) -—2_] =0
Defining
. 1
Plxy) = e—ﬁmx.n[@(x) - E:I/Q . (3%

Eq. (37) takes the form

—(SNSN@D = D, j' dye=#ron ]
o (39
. e,,.py(x.))p(x,y,tlp)]lx =0
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“where and where
= § ax |

P(x,yt|Py= ] dxo § dyoPx,y,t|x0,y0) 2T

e 4oy K&¥=4 [—r @7)

_ P(xo,y0) = e™*P.

Eqgs. (39) and-(40) imply that the calculation of (SNSN(f)) with ©
(hence of the escape rate, Eq. (29)) can be done by simply {4 pe—pron
propagating the initial. “distribution” P(x, y) of Eq. (38). This )
propagatlon is performed using the'FFT algorithm and the A= (48)

equivalent Schrédinger equation (see below). A final FFT
procedure is then used to get the derivative with respect to
x in Eq. (39). The evaluation of Eq. (29) is facilitated by
noting that the symmetry of the potential implies

(BNOD = (41)

1
g
Note that P(x,y) can be negative (in fact {dxP(x,y) = 0)
hence it is not a real distribution. An initial real normalized
distribution can be constructed as

Pyt =0) = Po(vy) + P(x.y)

where Pc(x,y) is the equilibrium distribution. Note that P,
is orthogonal to P, (Pi|P) = 0; ((P = constant). If this
. choice of initial distribution is made than P can be inter-
preted as the deviation of the initial distribution from equi-
librium. In fact it is easy to see that P(xy,y,,t =0) can be
used in the r.h.s. of Eq. (40) instead of ﬁ(xo,xo) without
changing the results for (SNSN(2)) in Eq. (37).

In actual calculation we use the language of the equivalent
Schrodinger equation to compute the r.h,s. of Eq. (39), The
rate Eq. (29) is the given by

42)

K=

y e"l”’(o:)’) .._a_.
0x

- 4D,
r«lllg\l(" Q”2 de

[e* YD B(x,y, ] )| x mo] “3)

where ®(x,y,t|®) is defined in analogy with Eq. (40) as the
“wave function” at {ime ¢, given that at t =0 it was

500 = gutro 10 000 = 3| ()

It is evaluated as ®(x,y.t|®) = e ™, Note that by sym-
metry it is orthogonal to the “ground state™ go(x,y) at all
time.

Next consider the Kramers result in two dimensions. Eq.
(31) takes the form

K = 2 kg 3)
where 7 is given by
kgT

@ o ow '
[ dx | dye-pren
-0 -0

Since the origin is at the saddle point the barrier frequency
is obtained from

4

- = - (By2

35 |, mymo M(@P). 49)

Substitution of Eqgs. (47) and (48) in (45) then leads to
—

k=pa [-2L S0 (50)
ax Xm0, )yl

5. Results and Discussion

The initial “distribution” used in our calculation is given
by Eq. (38). This corresponds to the actual distribution
Eq. (42), leading to

3

[ oo

Py=fdx | dxP(x,y0) == (51a)
0 - 4

and
0 w0 1

Py=fdx | de(x,y,0)=T. (51b)
[= o] OO

Eqs (51a) and (51b) imply that the diffusion process {ollow-
ing the preparatlon of this initial state proceeds from right
to left.

In Table 2 we present results obtained from the different
methods described in the previous sections: The smallest
eigenvalue (SNVE) method (Eq. (22)), Chandler’s steady
state relaxation rate (CSSR) method (Egs. (29) and (43)) and
the Kramers’ stcady state rate (KSSR Eq. (50)). These results
are given for different choices of the model parameters given
in Table 1. All the calculations where performed on a 27 x 27
grid covering the physical dimensions x = (-1.5;1.5), y =
(—1.0,1.0) (hence the spacings are Ax = 1.5x2~¢ Ay =
1.0 x2-%). The parameters in Table 1 characterize the po-
tential surface and the diffusion rates. The last colomn in
Table 2 gives the number of timesteps used in the numerical
time evolution.

Two of the potential surfaces used in the calculations de-
scribed here are shown in Figs. 2 and 3. These figures display
the potential surfaces corresponding to cases 1 (also 3 and
4) and 9 (also 11 and 12) of Table 1 respectively. Cases 1 —4
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Table 1t
“Description of cases
pa]::xt;:ttel?sl‘) Dy/D, ¥ Case
0, =0 10 6 1
O =0 10 2 2
05 = nf2 50 6 3
o, = 50 0.2 6 4
R = 50
T=1
0, =n/3 1.0 6 5
Oy = nf6 1.0 2 6
s = nf2 50 6 7
o = 02 0.2 6 8
UR = 5.0
=1
O, = nj4 1.0 6 9
Op = nj4 1.0 2 10
0s =x2 5.0 6 11
o, = 0.2 0.2 6 12
R = 50
=1
*) See Fig. 1,
Table 2
Transition rates
Case SNVE? CSSRY KSSR¥ Time
! 0.,05007 0.05027 0.05658 2000
2 0.70500 0.69150 0.69950 2000
3 0.08379 0.08260 - 2000
4 0.01449 0.01775 - 2000
3 005123 0.05156 0.05616 2000
6 0.70290 0.60090 0.59740 2000
7 0.07191 0.07252 - 2000
8 0.01774 002086 —~ 2000
9 0.04751 0.04853 0.05677 2000
0.04742 0.04712 - 3000
10 0.69200 0.59080 0.57210 2000
0.67330 0.50260 - 3000
11 0.06221 0.06521 - 2000
0.06170 0.06214 - 3000
12 0.01870 0.02101 - 2000
0.01833 0.01942 - 3000

) SNVE: Smallest Non-Vanishing Eigenvalue method, Eq. (22).
» CSSR: Chandler’s Steady State relaxation Rate, Eq. (43).
9 KSSR: Kramer's Steady State relaxation Rate, Eq. (45).

correspond to a linear reaction coordinate while cases 5—8
and 9—12 represent two groups of situations with curved
reaction coordinate. Some of the cases (2,6 and 10) corre-
spond to a small barrier hight (fV, =2) where the experi-
mental reaction rate is not well defined. For the other cases
fVe= 6. Finally in cases 1,2,5,6, and 9,10 the diffusion ten-
sor 1s isotropic while the other cases correspond to non
isotropic diffusion.

From Table 2 we see that good agreement between the
two numerical procedures considered in this paper exists in
all cases where the rate 15 well defined (discrepancies are of

B: Carineli et al.: Dynamics of Multidimensional Bagrier Crossing in the Overdamped Limit

T=(X2ov2) V2 x2 4y2)1/2

Fig. 1

Description of the geometrical parameters of the potential, Eq. (33).
05 is the angle between the two principal axes of the diffusion tensor.
In all the present calculations 05 = n/2 and. these two principal axes
are taken as the cartesian axes x and y

04r

- | I ! |
O'&I.Z 0.6

Fig. 2

Contour plot of the potential energy surface of case 3 with arrows
indicating the direction and magnitude of the steady state reactive
flux

the same order as the numerical accuracy of the results). It
should be noted that the numerical accurucy is also consid-
erably better for the high potential barrier cases where the
smallest non-vanishing eigenvalue is well separated from the
higher eigenvalues (or where the saturation region in
Eq. (29) is well defined). In these cases we have found that
at time 2000 (time units correspond tou = D, + D, = 1)
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0:8

Y ‘0.0

~0.67

=40

Fig.3
Same as in Fig, 2 for case 11

the error was less than 3%. The Kramers result also works
reasonably well when applied to the isotropic cases (in fact
its succéss for cases 2,6 and 10 (fV, =2) is surprising, and
¢ probably fortuitous.

"~ Consider now the effect of curvature on the reaction co-
ordinate and of anisotropy on the diffusion tensor. These
issues have been recently subjects of several studies. A recent
study [6] of the effect of the reaction path curvature in the
overdamped (Smoluchowski) limit of the Kramers problem
has shown that for isotropic diffusion (and isotropic poten-
tial wells) the curvature of the reaction coordinate plays no
direct role in the reaction kinetics, as is intuitively clear since
this kinetics is dominated by the flux across the saddle point.
Still Matkowsky et al. [6] have shown that the pre-expo-
nential factor in the reaction ratc may be modified by the
diffusion in direction(s) normal to the reaction coordinate,
and thus may account for part of the difference between the
result based on the (essentially one dimensional) Kramers
expression and the numerical work. (Note that the Kramers
result is the lowest order term in an expansion in powers of
(BV4)™", so corrections are expected even in one dimension).

Of more interest is the effect of non isotropic diffusion,
particularly when the reaction ~oordinate does not coincide
with a principal axis of the diffusion tensor. (Cases 3 and 4
correspond to situations when it does). Klosek et al. [8,9],
as well Berezhkovskii and Zitserman [10,11] have shown
that a qualitative difference exists between the cases where
the second derivative 4 of the potential at the saddle point
in the direction of fast diffusion is larger or smaller than
zero. When A4 > 0 the large potential barrier and large dif-
fusion anisotropy are interchangable, and a trivial general-
ization of the Kramers problem applies. When 4 <0 the
situation is much more complicated. We defer a detailed

| I ! J
-0.25 0

-0.5 0.25 05
flux ot X=0
Y-
| 1 1 I
-1.0 -05 0.0 05 .0
flux at X=0
Fig. 4

The reactive flux along the y axis, at A = 0 vs. position.
(a) case 3; (b) case 11

comparison between the analysis of this situation and the
numerical work to a later publication. Here we note that
this case correspond to D, > D; (cases 3, 7 and 11) and is
characterized here by the fact that the reactive flux across
the ridge (3 = 0) between the two wells is not necessarily the
largest at the saddle point. To see this we have plotted in
Figs. 2 and 3, superimpused on the potential surfaces cor-
responding to cases 1(3,4) and 9(11,12) respectively, arrows
whose direction and length represent the direction and mag-
nitude of the reaction flux. The latter is obtained from

ov(x,y

Jx(X,y’l) = —Dxl:'a?' + /3__—‘]1’(&)’»0

X o0x (52)
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. . : wv(x,
500 = =D 4 2R [ty 3
where P{x,y,t) is taken at the quasi-stationary state for
which the transition-rate is calculated. The flux arrows in
‘Fig. 2 correspond to case 3 and the flux arrows in Fig. 3 —
to case 11. The length I(x,y) of an arrow at location (x,y) is

taken as

o (21 ()T

where p is an arbitrary scale factor.Fig. 3 clearly shows the
deviation of the maximal flux from the geometrical saddle
point. This deviation depends on the geomet~y of the po-
fential surface, on the diffusion anisotropy and on the tem-
perature, and may lead to non-Arrhenius temperature de-
pendence of the reaction rate. Another view of the same
effect is shown in Fig, 4, where we plotted the x component
of the reactive flux as a function of the position y along the
y axis (x =0). Shown are plots for case 3 (Fig. 4a) and for
case 11 (Fig. 4b). The fact that for the‘latter case the flux
peaks at y =0 (position of the saddle point) clearly dem-
onstrates the effect discussed-above.

(54)

6. Conclusion

In this paper we have described numerical methods for
solving multidimensional diffusion equatxons and have-ap-
plied these methods to a model chemical reaction where
curved reaction coordinates and anisotropic diffusion play
non-trivial role in determining the reaction rate, The ap-
pearence of such multidimensional effects even in the rela-
tively simple overdamped situation emphasizes the short-
comings of analyzing reaction rates from equilibrium and
dynamical considerations purely at the transition state,

This work has been supported in part by the U.S-Isracl Bina-
tional Science Foundation and by the Isracl Academy of Science.
We thank N. Agmon for helpful comments.
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Interrelations of Different Methods for the Determination of Rates: Flux

Over Population, Generalized Reactive Flux, the Lowest Eigenvalue and Its
Rayleigh Quotient

Peter Talkner
Paul Scherrer Institute, CH-5232 Villigen

Nonequilibrium Phenomena [ Reaction Rates [ Reactive Flux

The ratio of Kramers’ current carrying stationary probability density and the equilibrium probability
density is utilized as smoothed characteristic function in the gencralized reactive flux method recently
proposed by Borkovec and Talkner [J. Chem. Phys. 92, 5307 (1990)]. Under a certain condition on the
potential, as generalized transition state ratc Kramers’ phase space diffusion limited rate is obtained. It
then répresents an upper bound for the true rate. An approximate expression for the plateau value of the P
generalized reactive flux yiclds a Rayleigh quotient for the lowest eigenvalue of the considered Fokker
Planck process.

1. Introduction
The generalized reactive flux method [1] primarily aims

at the effective numerical simulation of rate constants [2]

for those classes of dynamics as e.g. Smoluchowski or jump
processes that cannot be tackled by the original reactive flux
idea [3]. This goal was achieved by the use of a smoothed
characteristic function from which the reactive flux is de-
rived in contrast to a discontinuous one for the original
reactive flux method [1]. In this note it will be demonstrated
that the same idea may lead to an important improvement
of the initial reactive flux rate compared with the transition
state rate. For the sake of simplicity this discussion is re-
stricted to the original, one dimensional Kramers’ model
[4]. The generalization to higher dimensional models is
straightforward. From Kramers’ solution for a current car-
rying probability density one finds a smoothed characteristic
function for which the initial reactive flux rate already yields
Kramers’ phase space diffusion limited rate. The initial con-
ditions for the individual transmission factors that lead to
the time dependent reactive flux rate, are given by the
sources and sinks that render Kramers' current carrying
solution stationary [1,5]. In order that these initial condi-
tions follow from proper nonnegative probability densities,
the nonlinear potential which is obtained from the original
potential by subtracting the barrier part must be convex.
Under this condition it is sure that Kramers’ rate is an upper
bound for the true rate. In an appropriate limit an exact
expression for the plateau value is obtained that deviates
from the smallest eigenvalue of the considered Fokker-
Planck process only by an exponentially small amount. An
approximate calculation of the plateau value leads tu a Ray-
leigh quotient for the smallest cigenvalue which 1s different
from previously used ones [5].

2. Kramers’ Modei

As a model of a chemical reaction Kramers [4] considered
a Brownian particle of mass M moving in a potential U(x)

Ber. Bunsenges. Phys. Chem. 95 (1991, Nv. 3

& VCH 1 erlugsgesellsihaft mbH, 3 -6Y40 1 einheun, 1991

with local minima corresponding to an initial reactant and
a final product state. The reactant state x, < 0 is separated
from the product states x, > 0 by a barricr located at x, = 0.
The vicinity of the barrier is assumed to be parabolic with
curvaturc —wi:

Ulx) ~ — %M wix®+ U(0) for x near the barrier (2.1)

Under these conditions Kramers could construct a station-
ary Fokker Planck equation in the parabolic vicinity of the
barrier:

Lp(x,v) =0 for x near the barrier (2.2)

where the Fokker Planck operator is given by

L=-

0 0 (U’(X) l)) n ?knT 62 (2.3)

=T\ M o

and where y denotes the friction rate and T the temperature
of the heat bath causing fluctuations and dissipation.

The solution p is given by the product of a form-function
{(x,v) and the equilibrium Boltzmann distribution pe,(x,v)

p(x,0) = {(x,0) peg(x,0) 24
where
pcq(x»v) = 7Z-1e-0 Me2 4 LA T . (25)

The form function matihes smoothly the equilibrium dis-
tribution in the initial a¢ll with a vanishing probability den
sity at the product state. It is given by [4]

{(x,0) = Wf(M2myk T2, )"

(2.6)
F Maofu?
I e ZiksT7 dy
x—J,r wi

WWUS-YU21,91,03U3-0327 § 350 +.25,0
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-where

2\1;2
==2+(at+(Z))".

The stationary solution p (x, y) carries a probability current
over the barrier that follows from

@7

0
§ dvop(x=0,v).

= 8)

This flux is maintained by sources and sinks which are given
- by [1,5]

S(x,v) = —Lp(x,v) (2.9a)
1
Ay )”2 - 2..”.&.(,‘ - M)’
= [ ———— ¢ Avkn } 2.9b
<2nkaBT V'(x)e 20i.keT 3/ (29b)

where V(x) denotes the nonlinear part of the potential re-
sulting from the full potent1a1 U(x) subtracted by its para-
bolic contribution (2.1)

V(x)=Ux) + -;—Mw?, x?—U(0). (2.10)

Kramers’ phase space diffusion limited rate &y, is then readily
obtained from the ratio of the flux given by Eq. (2.8) and
the population n of the well

kkr

@.11)

—Eblka

i
n
Ay Wy
E 2— (212)

where E, = U(0) — U(xo) denotes the barrier height and

n= ‘j)' dx Oj? dvp(x,v). (213)

This result represents a reasonable estimate of the true rate,
if all trajectories ejected by the source properly thermalize
before eventual thermal fluctvations drive them out of the
initial well [1,5].

We conclude this section by noting that the action of the
Fokker Planck operator L on a product of a function f(x,v)
and the equilibrium distribution can be expressed by an-
other operator L* acting solely on f:
Lfpy = paL*f. (2.14)
The operator L* coincides with the backward operator of
the time reserved process [7,8]

Uj’l(lx) _ yv) 0

L*=—v-—a—+(

YkBT
ox +

v T M

62
7 @19

Moreover, we note that the operator L* is just the adjoint
operator of the backward operator L* of the original proc-
ess with respect of the scalar product defined by the equi-
librium expectation value

L g = LgL*f> (2.16)
where
(=1 dx | doftxo)palxo) (217)
and

0 % 0 kyT 0
L* = 0_5;_< A(lx) +yv)3;-+ vA;' o (2.18)

In the next Sect. we shall discuss the generalized reactive
flux method for this classical model.

3, The Generalized Reactive Flux Method

After a transient on a microscopic time scale 7, the re-
action rate governs the time behavior of the correlation func-
tion

S0 030> _

€O = =0 6=y

3.9)

where () again denotes the equilibrium average. 0(—x) is
the step function being unity for negative and zero for pos-
itive values of x. In contrast, f(x,v) is a function that
smoathly interpolates from unity in the phase space region
of reaciants to'zero in that of products. In order to avoid
back reactions, phase space regions of products must be
absorbing.

The time derivative of Eq. (3.1) yields a-time-dependent
expression:

dc@ _ _ <O(=x()) L*/x,0)
de S o(=x)

k(t) = — (3.2

In order to obtain this result, one expresses the time de-
pendent part 0(—x(t)) formally by
0(—~x(t) = e*"* 0(~x) (3.3)
and, after differentiation with respect to ¢, uses Eq. (2.16).

In a standard way the generalized transition state k(0)
and the transmission coefficient «(t) are introduced:

k(t) = k() k() (34)
where

o SO(=x) LEf(x,0))

O = = e 0 63
and

k() = 0(=x@)+ — <O(=x@))- . (3.6)
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The nonequilibrium initial states p, by which the expecta-
tion values {6(—x(t))) . are determined, read

_ B(Fx) peg (x,8) L*/(x,0)
P = "00(F ) L, 0)

In order that p, are nonnegative probability densities, the
function f(x,v) has to be properly chosen. The best choice
would be the eigenfunction A(x,v)cof L* with the smallest
eigenvalue ~4:

(KN

L*h(x,v) = —2Ah(x,). (3.8)
With this choice, the time dependent rate &(t) varies exclu-
sively on the long time scale, determined by the inverse rate
k(t) = Ae¥, (39)
Hence, the generalized transition state rate already coincides
with the true rate A
k@) = 2. (3.10)
However, the eigenfunction £ and the corresponding eigen-
value -4 are not known exactly.

As an approximation Kramers’ function {(x,v) suggests
itself because first, it shows the desired qualitative behavior
and second, approximates the eigenvalue Eq. (3.8) in the
important barrier region [cf. Egs. (2.2), (2.4) and (2.14)]
L*{{xp) =0

for x near the barrier . (3.11)

With Eqgs. (2.5), (2.6), (2.15) and (3.5) we obtain for the gen-
eralized transition state rate k(0) Kramers® phase space dif-
fusion rate (2.12) )
k(0) = ki . (312

Combining Egs. (2.5), (29), (2.14) with Eq..(3.7) we obtain
for the initial distributions p,. and p_ the normalized pro-
jection of the source and sink density (2.9) on the reactant
and product phase space regions, respectively:

0(Fx) S(x,0)
T dx T dv 0(Fx) S(x,v)

Pz = (3.13)

From (2.9b) we immediately find that the functions p are
nonnegative if the nonlinear potential V(x) defined by
Eq. (2.10) is a convex function
V) =0. (3.14)
Under this condition, the Kranters’ form function {(x,v) is
an admissible choice for the reactive flux function fix,v).

Since, as for the original reactive flux, for proper nonneg-
ative p, the expectation values fulfill the obvious inequali-
ties

0 < O(=x)- < O=xO+ <1 (3.15)

for any admissible choice of f(x,v) the generalized reactive
flux rate is an upper ‘bound for the true rate
kQ) =2 k. (3.16)
From the above consideration we find that a sufficient con-
dition for the Kramers raie to be a bound for the true rate,
is the convexity of the nonlinear potential. This is certainly
too strong a condition. For-example, for a cubic potential
U(x) = Mwix?*2 — ax?[3, a > 0 one can modify Kramers’
form function for positive values of x such that one obtains
proper probability densities p, -without a change of Kra-
mers rate, Consequently, still incases where V(x) is'not
convex, the Kramers rate may be an upper bound.

Recently, Pollak et al. [9] obtained the weaker condition
that ¥(x) must be nonnegative in order that &y, be an upper
bound,

4, The Plateau Value

The time dependence of the reactive flux rate is deter-
mined by the propagator ¢“** see Egs. (3.2), (3.3), and results
finally in an exponential decay proportional to e~*, where
— 4 is the smallest eigenvalue of L* and, with Eq. (2.16) also
of L*, In order to compensate for this decay, one may mul-
tiply the reactive flux rate (3.5) by e*. Then, in the limit
t— o0, one obtains for the plateau value ky of the reactive
flux rate

ky= 'l’l.n; k(t) e*

_ _ She) LA Clilx.) 0(=))
S 0(—x)>

@1

where the fact is used that ¢ +4" in the limit t —> oo projects
onto the eigenspace of L* belonging to the smallest eigen-
value —4:

lim e® +4r = P,

[ Rad ]

4.2

The projection operator P, may in the usual way be con-
structed from the right ~ and left — eigenvectors of L*:

L*h(x,v) = —2h(x,0) (4.3a)
L*li(x,0) = —2h(x,v) (4.3b)
where

<hixw) i)y =1 @3¢

and where we have used that L* and L* are adjoint to each
other [see Eq. (2.16)]. Since L* and L* are further connected
by time reversal [compare Egs. (2.15), (218)] k and /i are
also connected by the time reversal transformation:

fixv) = hix,—v). 44)




330

P. Talkner: Interrelations of Different Methods for. the Determination of Rates etc.

Using Egs. (2.16) and (4.3a) one obtains from' Eq. (4.1) for
. the plateau value ky

Sx0) b)) <R(x,v) O(~ A
S, 0) 0(=x))

All three factors (f(x,0)h(x;0)), <Al(x,0)0(-x)), and
{f(x;v) 6(—x)) deviate from the population of the well only
by factors of order 1 —e~5¥*sT_ Hence, as one expects, the
plateau value of the reactive flux rate coincides up to ex-
ponentially small corrections with the smallest eigenvalue of
the Fokker Planck operator.

Since, however, the exact eigenfunctions h and / are un-
known, one can try to evaluate the expression (4.1) for the
plateau value of the reactive flux with the help of an appro-
priate pair of test functions h,(x,v) and fiy(x,v), that one may
choose consistently with the reactive flux function f(x,v):

J(,v)

kp;=)~

4.5)

o) = e D Ty “9
where [see Eq. (4.4)]
J(xv) = f(x,—v) @7

and where the normalization is given by Eq. (4.3¢). A(x,v)
follows immediately with Eq. (4.4). For the plateau value &,
one then obtains a Rayleigh quotient for the smallest cigen-
value of L*:

iy = S L (x.0)y
" T 0T

This expression is dilferent from previously suggested forms
of the Rayleigh quotient [6], as it contains two different test
functions for the left and right eigenvectors which are related
by time reversal, rather than only one of these. Only in cases
with strict detailed balance [7,10] where the operators L*
and L* coincide the classical Rayleigh quotient for a selfad-
joint eigenvalue problem is recovered from Eq. (4.8).

If one chooses for f(x,v) again Kramers’ function &(x,v)
one finds from Egs. (2.6), (4.6) and (4.8) for a symmetric
potential for the plateau value

(4.8)

I;
b= k{1 = s 090 + 00 “9)
where
_ kT il
= Mot 71 Qaf (4.10)

Possible temperature corrections to the Gaussian approxi-
mation of the well -population are neglected. For ; — x ky
goes over to the Smoluchowski rate with its leading tem-

perature corrections [11], whereas the expression (4.9) fails

‘to give the correct behavior for small friction constants ¥y,

because then the Kramers form function does not ade-
quately approximate the eigenfunction A(x,v).

Conclusions

In this note the generalized reactive flux method is applied
to the original Kramers' model. It is shown that under the
condition of a convex nonlinear potential Kramers’ phase
space diffusion rate may be obtained as a generalized tran-
sition state rate. It is then an upper bound for the exact rate.
Further, it is demonstrated that the crucial modification of
the reactive flux function from a discontinuous to a smooth
characteristic function does not change the plateau value of
the time dependent reactive flux rate which is given by the
lowest eigenvalues of the Fokker Planck operator, The Ray-
leigh quotient that follows from the expression for the pla-
tcau value allows for the nonselfadjointness of the backward
operator as it vontains two different test functions,

The generalization of the demonstrated method to higher
dimensional systems with detailed balance is straightfor-
ward, In principle, the generalized reactive flux method may
also be applied to problems without detailed balance. The
main problem then consists in the determination of a sta-
tionary state corresponding to the thermal equilibrium state,
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Mischa Borkovee, Peter Hiinggi, and Eli Pollak.
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The Kramers Problem in the Turnover Regime:
‘The Role of the Stochastic Separatrix

M. M. Klosek?, B. J. Matkowsky?, and Z. Schuss>>
‘Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Iilinois 60208, USA

Activated Rate Processes | Diffusion | Nonequilibrium Phenomena | Statistical Mechanics

We consider the:problem of activated escape of a Brownian particle from a potential*wen: We find the -
stochastic separatrix S (the locus of starting points of the phasc space trajectories which have equal
probabilitics of ending up inside or outside the well) for (i) the extremely anisotropic overdamped motion
of a two-dimensional Brownian particle in a bistable potential, and (ii) the damped and uiiderdamped
motion of a one-dimensional Brownian particle in a single metastable state. The significance of S is that
(1) it defines the reactant and product wells in a natural though not nccessarily intuitive way, and (2) it
reduces the calculation of the escape rate to the solution of the stationary Fokker-Planck equation inside
S, with absorbing boundary conditions on . Finally, employing this approach we derive an expression
for the Kramers escape rate which bridges uniformly between Kramers weak dainping regime and tran-
sition state theory.

1. Introduction

The correct description of the transition state (TS) of a
diffusive activated rate process with a-(single) metastable
state, and of the stochastic dynamics in the neighborhood
of the TS, is crucial for the understanding of the activation
process, However, descriptions of this behavior for diffusion
processes (see e.g. [1—16]) do not seem to be complete.
Indeed, the behavior of the stochastic trajectories near the
TS has often been assumed, rather than derived from anal-
ysis of the underlying diffusion model. For example, a fre-
quently used assumption in Kramer’s problem [1] is that
trajectories do not return from the TS (see c.g. [2]). When
applied to the stochastic trajectories of the Langevin equa-
tion, although correct in the extremely underdamped regime,
as shown below, it does not hold for higher values of the
damping coefficient y [1]. Analyses of stochastic trajectories
near the TS (see e.g. [6,7,10—12]) also do not provide a
complete picture. In particular, an adequate theory of the
return probability in the transition region between the un-
derdamped and the transition state theory range of y, which
must be taken into account in the calculation of the escape
rate, has not been developed. This issue did not arise in [3]
and [4], where the Langevin description was replaced by
one based on a Hamiltonian of a particle in a bath of har-
monic oscillators, thus changing the formulation of the dif-
fusion problem posed by Kramers. In addition, because of
the choice of normal mode coordinates in [3,4], the sto-
chastic phase space trajectory of the particle near the TS
was not described.

The purpose of this paper is to clarify the behavior of the
random trajectories near the TS and to calculate the acti-
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vation rate in several problems described by the Langevin
equation. We describe analytically the stochastic separatrix
S, the locus of starting points of the phase space trajectories
which have equal probabilities of ending up inside or outside
the potential well. Thus S is'taken as the definition: of-the
TS.

There are several important applications for S. Obviously,
the escape rate . from the domain bounded by § is twice
the absorption rate k., in S, which explains the factor 1,2
in the relation between k.. and the mean first passage time
to S [8). The analytical and numerical calculation of Kk
can thus be reduced to that of calculating the first non-zero
eigenvalue of the forward or backward Fokker-Planck op-
erator inside S, with absorption in S. It also defines the
reactant and product wells for bistable damped models in
a natural, though not necessarily intutitive way, indepen-
dently of the ridge R of the potential (see Fig. 1), and so on.
Therefore the determination of S is of considerable impor-
tance.

We determine S in two classical examples. In Section 2
we consider the case of a two dimensional anisotropic bist-
able Smoluchowski system. We show that depending on the
relative sizes of the anisotropy parameter § and the dimen-
sionless temperature ¢ (measured in units of the well depth),
either S=T (e.g, if > ¢), or S is an altogether diffcrent
curve (if § < ¢), depending on the geometry of the potential
near the saddle point M. While in the first instance S passes
through M, in the latter it may not. This explains the non-
saddle point activation energy predicted in [9—~12]. It also
shows that S is not always close to I" when ¢ is small, as
implied in [6]. If however 6 =0O(1) and ¢ € 1, then S=1T,
as asserted in [6] and [8]. The proof that S=T for ¢ < §
is the same as that for the classical Kramers® problem of
activated escape of a Browman particle from a metastable
state for ¢ < y. The Langevin equation in this case is given
in dimensionless variables by

S8+ V() = /270, (1.1)

WU3-21,91,U30U3-0331 § 3.50 +.25,0
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where-v-is standard Gaussian white noise. We.assume that
V/(x)-has.a single local minimum (maximum) at x,(<xc).
The domain-of attraction D of the stable point x =X,,% =0
in:phasé space is bounded by a separatrix I', which-in this
example is determined by-the solution of

X=y, y=—yy—-V(x), (1.2)

which converges to the saddle point x = xc, y =0 as t— c0.
We set w3 = V”(xa) and wk = — V”(xc). Kramers’ expres-
sions for the escape rate from D are:

K = e~ for y<e<l, (1.3)

where I¢ is the action of the motion on the critical energy
contour E = E, = V(x¢) and AV = V(xc)— V(x4), and

Kie, = Qrig for &> 7y, (14)
where

‘/ 2 4wi —~-
f= _w \ (1.5)

2(1)c
and where the transition state theory rate x, is given by

Wy

e—Al’la‘
T

(1.6)

K =

Obviously 2 ~ 1if y <€ o, so that ;. reduces 10 K, in this
limit, rather than to K4, as it should. This leaves a gap
between the expansion of the escape rate in the extremely
underdamped region y<e<1 and the TST region
ey <.

In Section 3 we show that for 2 < 6 in a two-dimensional
anisotropic Smoluchowski problem, as well as in Kramers’
problem in the limit (1) e—0, y = O(1), the stochastic se-
paratrix is the deterministic separatrix $=I". In Section 4
we show that in the limit (2) y—0, S is the constant energy
contour E = E. — glog2, thus solving the problem cited in
[7]). In Section 5 we find an asymptotic expansion of S in
the range of parameters (3) ¢ <€ 1, y <€ w¢, which includes
the range where ¢ and y are comparable, and which bridges
between (1) and (2). Finally, in Section 6 we derive an ex-
pression for the escape rate in the region (3), which bridges
between Kramers® expression (1.3) in the limit (1) and the
TST expression (1.6) in region (3).

2. The Stochastic Separatrix for an Extremely Anisotropic

System

We first consider the extremely anisotropic overdamped
motion of a two dimensional Brownian particle in a bistable

potential V(x;,x,) [10,13]. In dimensionless variables the
dynamics is given by the Smoluchowski equations

5= =t T
X1 (2.1)

J.Cz = —5—6'1'/" + I/\286W2 s
ax;

where 9§ is the anisotropy parameter, and w,, W, are inde-
pendent standard white noises. The bottom of the reactant
(product) well is at @ = (X4, X24) (b = (X35, %2)). The do-
mains of attraction D, and D, of the wells a and b, are
separated by a separatrix I', which is the curve determined
by the noiseless dynamics ((2.1) with & = 0) which converges
to M as t— c0. In the isotropic case =1, I' = R, where.R
is the ridge of the potential surface (sce Fig. 1).

Fig. 1
Double well potential for (2.1). M, R. I" and S denote saddle point,
the ridge, the deterministic and stochastic separatrices respectively.
The dashed curves represent level curves of V

If however J < 1, I differs considerably from R. The direc-
tions of R and I" at M are shown in Fig. 1. If the local
expansion of ¥ near M is given by

1 1
V(xy,xq) ~ —é-Axf + Bxy Xa + —2—ng + ., 22

the scenario depicted in Fig. 1 corresponds to A < 0.

Let 2,4 be a neighborhood of a(b), deep inside the re-
actant (product) well and let p(x;, x;) be the probability that
a trajectory of (2.1), starting at (xy, x;), will hit Q, before it
hits Q,. For a trajectory that starts in the reactant well and
reaches the point (v, x,), plx,, ».) is the probability of return
from (x,,r,). The curve defined by p(x,,x)) = 1,2 is the
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stochastic separatrix S. The function p(x;, x;) is the solution
of [14]

v op o
op + 0Lip= ~ +e— :
Lop+0Lip = =55+ 25 23

ov op o ]_
J"S["ax2 I Rkl

with.the boundary conditions

P, =1 if (%1,%) €0, (24)
plerxz)=0 if (x(,x2) €00,

where 02, and 0, .are the boundaries of Q, and @, , re-
spectively. If 6 < ¢, we expand

p~p+8p . (2.5)
anil obtain

Lyp® = 0 (26)
Lp' = =Lp°, @7
and so on. From (2.6) we obtain that p° is independent of
X1, and from (2.4) we obtain that p° = 1 (0) in the strip
S.(Ss). Next we determine p° in the strip Sy (see Fig. 1). The
solvability condition for (2.7) is that the right hand side is
orthogonal to the solution exp(— V/e) of the homogeneous
problem for L§ (the one-dimensional Fokker-Planck oper-

ator). Thus

. d?p®  dV(xy,8) dp°

=0for x <x;<x3, (298

dx% dX2 dX2
(see Fig. 1) with the boundary conditions
Px) =0, p°(5) =1, 29
where
+00
V(xy,6) = —elog [ e~Veswxedy, . (2.10)
]

We consider the case that V" has two minima, and achieves
its local maximum at a point x,(¢) in the interval (x3, x7).
The solution of (2.8) and (2.9) is given by

X2
J‘ e—V"’(tz.c)/c dx,
P’ = —’;f——d——— 2.11)
J' e—l’ (x2.€)/e de
x3
Clearly, lin(} p° =1(0) for x, > (<)x4(0). Thus S, the locus
E~'

of points (x, x,) such that p(x;,x;) = 1/2, is given to leading
order in é and ¢ by x; = x,,(0) (see Fig. 1). Note that S differs

considerably from both I" and R. The reactant and the prod-
uct wells for an extremely anisotropic (6 < ¢) chemical re-
action described by (2.1) [13] are naturally defined as the
domains on either side of S, rather than the domains on
either side of R or I' [9 —13]. Thus the physically meaningful
separatrix is neither I’ nor R [9—13], but rather §. Other
cases will be discussed elsewhere.

3. The Stochastic Separatrix for ¢—0

We now consider (2.1) in the limit ¢— 0 with § = O(1) as
well as (1.1) in the limit ¢—0 with y = O(1) and prove that

«in these limits S =T These problems were considered in

{6] [7] and [17], however the argument in [6] does not
cover all cases, as may be seen, e.g., from the simple example
of a-drift which vanishes on I" (constant ridge height). For
definiteness we:present the proof for the Langevin equation
(1.1). The proof for (2.1) is exactly the same. Let Q, be a
neighborhood of the stable point (x4, 0), and Q, be the half
plane x > xp, where xp is chosen so that xz > xc. The prob-
ability p(x,y) that the particle, initially located at (x,y) will
hit 0Q, before it his 09, is the solution of

9%

op 0
Bp =gy gy =yt V'(x))'g'i" =0 (3.4)

outside 2, and @, with the boundary conditions
p=1ond2,, p=0ondY. (3.2)
The outer expansion

p=p"+o(l)asc—0, (3.3)
implies that on the trajectories (x(t), y(¢)) of (1.2) we have

0
POy _ (3.4)
de
so that p°(x(t), y(£) = const. on each such trajectory. Since
trajectories that start inside (outside) I reach 09, (the line
xp), we have by (3.2)

p® = 1 inside I, p® = O outside I'. (3.5)

The outer solution p° is discontinuous across I'. Therefore
we construct an asymptotic solution in a layer about I, to
smoothly connect the solutions (3.5). We change variables
in (3.1) to (x, u), where

1Be o = distCoy) ), (3.6)

u=
Ve "
and z(x) is a solution of the Bernoulli equation

¥/ x) + bex) %) = ;@alx s Ny £ (3.7
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that satisfiés the initial condition

10xc)= /Wm——ﬁ; (38)
Here

bolxc) = ﬁ"%—%i (39)
-where

A= li___”;“““’% ' (3.10)

PRv-A

(see [S], Egs. (2.23)—(2.29) or [15], Egs. (5.26) ~(5.45)). Set~
ting p(x.y) = P(x,}) and expanding

Plx,p) = POx,u) + o(1) for ¢ < 1, (3.11)
we obtain the leading order boundary layer equation

92p° o op° 4 - yr(x) op?
op?

o ix0)xi(x) Ox

=0, (3.12)

with the boundary and matching conditions

lim- P(x,) =1, lim P°(x,p) =0. (3.13)
e o0 =0
Here g, = 0g/0y. The solution of (3.12), (3.13) is [17]

(3.14)

u
Plx,p) = ,—217 _Iw e~ ds.

Thus if (x,p) € I, then g(x,y) = 0, so that u = 0, and

0 1 t —s22 1
p (x,O) = -2-1? I -€ ~ds = ?
-0

It follows that § = I'" in the limit e — 0 fory = O(1) [6-8,
17]. '

(3.15)

4, The Stochastic Separatrix in the Extremely
Underdamped Kramers’ Problem

Next we consider (3.1) for y < ¢ < 1. We expand

p(.y) ~ p°(x.) + o(l) as y— 0, @1
and obtain that p®(x,y) is constant on constant energy con-
tours. Thus for every (x,y) such that E = y*2+ V(x) > E,,
the outer solution is

P’xy =0. 4.2

For E < E, we.average.(3.1) over constant energy contours,

‘to obtain
aZPO apo ) apo
S(I(E)TSE-Z—-!- T(E)TE- - I(E) Y5 =0, (4.3)

where the action I(E) and the period T'(E) of the undamped

-noiseless motion on the constant energy contour E, are given

by

I(E) = $ydx, and T(E) = I'(E) = §£1_’L 44
E £y

We choose 09, to be the contour E = E; < E,. The bound-
ary condition for p° is given by
Po(x»}’) =1 on E = El ’ (4-5)
and the matching condition is that the solution of (4.3)
matches with the outer solution (4.2) as E— E,, which irr -
plies that

p°(xy) =0 on E=E,, (4.6)

The solution of (4.3), (4.5), and (4.6) is

P(xy) = ﬁ—]e—(s—s’;—ds} / {:j.%ds} or (cy)eE, @D

Note that the matching condition (4.6) implies that trajec-
tories which reach E, are unlikely to reach 0Q, before 0%,
i.e., are unlikely to return,

Now we use (4.7) to find S, by finding the value E,;, of E,
for which

1

P = 3)

Since for small ¢ the main contribution to the integrals in
(4.7) come from E = E,, we obtain to leading order in ¢
Es = Ejp ~ E;~¢log2 for ¢ <1. 4.9)
Thus in the limit y— 0, S is the contour E = E, ;. Obviously,
for y#0, S lies between the E,, and I'. Particles whose
energy is higher than E; - ¢log2 have a probability of at
least 1/2 not to return to the well, contrary to commonly
held beliefs. Obviously as y increases, the probability of re-
turning from the barrier top to the well increases continu-
ously from 0 to 1/2.

Note that for E close to E,, I(s) is close to I, the action
of the motion on the critical energy contour E = E,, so that
(4.7) implies that

Po(x.)’) ~1- e_c > (4.10)
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Thus, in a layer.near E,, the probability p°(x,y) as a function
of ¢, satisfies

i+ p =0. @4.12)

This fact is used in the next section.

5. A Uniform Expansion of the Stochastic Separatrix in
Kramers’ Problem

In Sections 3 and 4 we found S for ¢ <y and for y < ¢,
respectively. Here we determine $ in the range where y and
¢ are comparable. Comparing (3.14) with (4.7) we see that
neither is uniform in ¢ and y, since they do not reduce to
one another in the appropriate limits. Therefore we now
construct a boundary layer to connect the outer solutions
(3.5) in the parameter range where ¢ and y are comparable.
We introduce in (3.1) the.variables

_ E—E

__r
(=222, t= - Lrw, (51)
" where
In(9 = xf yr(x)dx (52)

is the (negative) action :of the motion on I' between the
points x¢ and x, Setting p(x,y) = Q(&,{) in (3.1) we obtain

2 )
Q«+Qz(1 —;"’—) - 0 [1 +—3(%Ji

(53)
Matching to the outer expansion implies that
QED =0 for {+&=0, {<0 (5.4)
and
0¢0)—1 as (>, (5.5

The initial condition at ¢ =0 is obtained as follows. The
limit £— 0 corresponds to y—0, so that in this limit Q(0,{)
must agree with (4.10). Thus (4.12) implies the initial con-
dition

O + Qc(1 - 'jT) =0 for ¢=0. (5.6)

Setting § = { + ¢ and expanding Q = Q°+ o(1) we obtain

O =0¢ for y>0,¢>0 X))

4.11).

with the initial*and boundary conditions

05,0 + 20,n) =0 for >0 (5:8)
and
Q°&0) =0, and Q%) —1 as n— . (5.9)
The solution is given by
iV
QEn = [~ | eds
T o
n+&
+ c [ e dz
Vo Vi (5.10)
e"’?"‘{ 0

— -z32 = pi
er el =R

+ R* 1) — R*E).

Next we show that in the limits y < e < land e € y <
we, (5.10) reduces to the results obtamed in sections 3 and
4, so that (5.10) provides a uniform expansion of the prob-
ability p(x,y).

First we consider y < ¢, which corresponds to é—0 in
(5.10). Obviously, in this limit the initial condition (5.8) is
recovered, so that

Q& ~ Q°0) =1 —e™=1—e"Er-Blc (511)
Setting

Q"¢ = -;_— (5.12)
we obtain

Es = Er—elog2 = E,—yIr(x)—¢ log2 . (5.13)

Clearly, (4.10) is recovered as y— 0, and (5.13) also provides
a first correction term to (4.10).

Next we consider ¢ < 9, which corresponds to ¢— co. It
is easily seen that R%(&,n) and R3(,%) in (5.10) vanish, so
that R(£,#) determines the asymptotic behavior of Q°(&,),
which agrees with (3.14). To determine S in this limit, we set
RY(,n) = 1/2. There exists a value z,;, such that

2 212 2 1

- - = - 5.14
\/; Jeidz=3 (14
Therefore S is determined from the equation

N
—_— =2y, 515
1/2_6- 112 ( )
or equivalently
Es ~ Er — |/ 2ey|1r(X)] 242 - (5.16)
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Clearly, (5.16) reduces:to'S = I in the Timit ¢—0, and also
provides a first-correction term in the expansion of S.

~ We note that in thé two.limits considered, we obtain dif-
férent correction terms in the expansion of S, so that neither
one can be separately used as a uniform expansion of S.

6. A Uniform Expansion of the Activation Rate in
Kramers’ Problem

Next we calculate the-escape rate from the relation

Kese = %xabs )
where K., is the absorption rate in S. To this end we cal-
culate the stationary probability density function f(x,y) in-
side § (in phase space), with a source at (x4,0) and absorp-
tion in S. Thus f(x,y) is Green’s function:for the Fokker-
Planck operator with absorption in S. Then

. F
Kavs = N’ (6.2)
where ‘F is the total probability current on § and N is the
total population inside S. The Fokker-Planck cquation is
given by

Pefy =Y+ [y + VN S), = —0(x—xp)), (6.3)
with the boundary condition
SEDIs = 0. (64)

The asymptotic structure of f(x,y) for small ¢ is given by
[15] '
Sxy) = e~Hq(xy), (6.5)
whete q(x,y) is the solution of (3.1) with the absorbing
boundary condition (6.4) and the matching condition
q ~ const. as ¢~ 0, (x,y) inside S — {(x4,0)} , (6.6)
The function g(x,y) has an integrable singularity at the
source. We note that although q(x,y) and Q(¢&,1) satisfy the
same equation Lg=0 (sce (3.1)) and the same matching
conditions (6.6), the absorbing boundary condition for
q(x,y) is assigned on S, whereas that for Q(&,) is assigned
on I'. However, since to leading order in ¢ we have Q(¢,n)
= 1/2 on S, the function 2 Q(&, 1) — 1 vanishes on S, matches

to 1 away from S, and satisfies (6.4). It follows that to leading
order in ¢

abey) ~20°¢n) -1, 6.7
so that by (6.5)
SGey) ~ e=E2Q% ¢ —~ 1). (6.3)

61),

By definition, th : probability current F and the total pop-
ulation N are given by [15,16]

0

F= —[yefydx ~ —2epfe B g dx 69)

5 5 oy
and
N={ffdxdyn 2R ke, (6.10)

D Wy
where D denotes the reactant well. Hence, by (6.1),
0

—yw, [ e~ ————aQa(é'") dx

Kego ~ > eVt (6.11)

2n

Next we consider (6.11) in the two limits, y < ¢ and & <y,
From (5.10) we have

0 )= s e=i2 ¢

e""l“"c «©

+
V2n VEewE

e=# 1 dz,

The limit y < & corresponds to ¢—0 so that by (5.13),
Es ~ E, —¢&log2, the first integral in (6.12) vanishes, the sec-
ond integral tends to 1, and —#+ ¢ — —log2. Therefore
(6.11) reduces to

yw, feEd pg (x) dx
s V(XA;:\',{)/G
Kese ~ °
esc 2ne (6.13)
_ Yoale et for y<e<i,

2ne

;vhich is Kramers’ result (1.3) in this limit.
The limit ¢ < y corresponds to £-- 0. As noted in Sec-
tion 5,

Q°Cm) ~ R'(&n) as &— 0, (6.14)
and it can be easily seen from (6.12) that
01Cm) ~ Ry&m) as E— . (6.15)

The boundary layer function R'(Z,y) is similar to P°(x, ) in
(3.14). It has been shown in [5, 15] that if Q°(&, ) is replaced
by P°(x,z) in (6.11), then

K
=0 as &-0,
Kt

(6.16)
which is equivalent to ke, ~ Ky for ¢ <€ 1. In particular Q ~ 1
if ¥ € wc, that is,

Kee ~ Kin

for ey <oc. 6.17)
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Therefore in order to show that (6.17).holds.for . defined

by (6:11), it suffices to show that

IE{TZE—}/{%}~1 for &<y <.0c ‘(6.18)

for (x,y) in a boundary layer mear the saddle point (xc,0)
(in particular for (x,y) € S, near (x,0)). According to [5,15]

Ve

Qy (xCa 0) ’ (619)

2xc) =

where A, and A_ are the positive and negative roots of

*

B Ay—wd =0, (6.20)

respectively. On the other hand, for (x,y) in the boundary
layer near (x¢,0)

N yEx) =y

V28 2Y-2e7Ir(%)

Since near (x¢,0)

~ Or)=yyr() 621)

J/ —2eyIr(x)

yr(x) = A(x=xc)+ O((x~yc))), (6.22)
we have by (5.2)
— 2
1) = 2255 o)) mear (50,0), (629
and
, o(x.y)
X) =y ~ ——= for ¢ < 1 and (x,y) near (x¢,0).
.VI‘( ) Y Qy(x(,‘;o) ( y) ( ¢ )
(6.24)
It follows that ’
. V=2
1~ : (6.25)
l/z—g Qy (ny 0) I/C—'};
so that the limit (6.18) is
Ay
= _)—Nl for e<y <o, (6.16)

hence (6.17). Thus (6.11) bridges between the extremely
underdamped regime y < ¢ € 1 and the TST regime
& € 9 < we. A uniform approximation to the rate constant
is given by

Kynit = .ka (6'27)

(see [2]), where Q is Karmers’ factor given by (1.5).
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1. Introduction

The problem of dynamical properties of nonlinear systems
driven by colored noise is subject” of considerable interest
[1]. In this paper we consider the general nonlinear flow

% = fx) + g&x) i = Folx), I = 64, 6 = & ()

driven by the dichotomous Markovian process (DMP) I,
which jumps between the two values 4 4 with the mean
frequency «. To be specific we investigate the Stratonovich
model [2]

X o= ax, — x3 + xl, - @

where a is the control parameter which (in the absence of
noise) describes a bifurcation of the stable stationary state
when changing its sign. A variety of physical phenomena
(some of them are listed in [3]), where stochastic fluctuations
of the control parameter around the mean value occur, is
modelled by (2).

The full information about the dynamical properties con-
tains of coursc the time dependent probability density which,
however, can be hardly calculated for nontrivial problems.
For the Stratonovich model, e.g.,, only the asymptotics is
known [3].

There are, however, characteristic times which can be cal-

culated without explicit knowledge of the time dependent
probability density, the mean first passage time (MFPT) and
the nonlinear relaxation time (NLRT). Whereas the MFPT
is the average of stochastic first passage times which are
needed in a representative number of realizations to leave
a given interval, the NLRT describes the relaxation of the
mean trajectory starting far from equilibrium to its station-
ary value. The concept of MFPT remains even meaningfull
if no stationary state of the system exists.
MFPT’s of non-Markovian processes driven by dichoto-
mous noise are investigated starting from the Kolmogorov-
backward equation [4—14] or, alternatively, enumerating
the stochastic trajectories [15—19]. In the former approach
boundary conditions characterizing the end points of the
interval have to be posed, The exit point is absorbing, the
other end point may be reflecting [13] or absorbing, if it
coincides with the natural boundary of the support it is
natural reflecting [14]. With these boundary conditions the
MFPT can be calulated up to quadratures [11—14,17],
These quadratures can be evaluated analytically in terms of
hypergeometric functions of multiple arguments if the flow
Fy(x) is polynomial in x [14].

The NLRT generalizes the formalism of linear relaxation
times (LRT) which describes the relaxation of correlation
functions in the steady state. For the LRT there exist exact
results for Gaussian whtte noise (GWN) [20] as well as for
the DMP- [21,22]. For the NLRT exact results are known
for GWN [23]. For the Ornstein-Uhlenbeck process (OUP)
approximative methods are available [24—27], only very
recently an exact result for the Verhulst model was obtained
via the calculation of time dependent moments [28]. In this

paper we give an 2xact calculation of the NLRT for systems
driven by the DMP generalizing previous results for the
LRT [20-22].

We consider the Stratonovich model in a parameter re-
gion where the stationary probability density

Py(x)=N[x|~" TI |x|=2*%|x?— x%|*o~!
o= ©)]
20.=0f(a+ocd), x2=a+0c4,

(N is a normalizing factor) exhibits a noise induced local
maximum, i.e. for max {a/d —1, (4/a—a/d)/4} <of
(24) < a/4 +1[3,4]. We investigate in Section 2 the MFPT
to reach the local maximum xp,, of P; injecting the system
at the local minimum X,

Xhaxma = {2+ 3a F [(a—2a + 544'3)/5. @

In Section-3-we-calculate the NLRT characterizing the re-
laxation of the system starting from Xp., i.¢. the decay of
an unstable state (see also [29] and references therein) and
compare the result with a MFPT.

2. Mean First Passage Time

The MFPT T(x,) to leave the first time a given interval
F starting at ¢t = 0 with realization /, ,, = o4 from x; is
governed by

“1=FTo~-alo-T.0), 0 = &, ()

where Tg is the shorthand for 8/0 x, 7o,

Eq. (5) is obtained in the simplest way by integrating the
Kolmogorov backward equations over the interval ¢ and
nver the time span from 0 to o [4~—14].

The boundary conditions depend on the nature of the end
points of the interval # under consideration. At an exit point
xp one imposes an absorbing boundary condition, i.e. if the
flow for the realization o4 of the driving process leaves the
interval at x; we have

Ty () = 0. ©

If the interval is bounded by two exit points we simply have
two absorbing boundary conditions. A different situation
appears if the other end point coincides with one of the
natural boundaries xg of the support. There the flow for the
realization opd of the driving process vanishes, F;, (xp) =
0. Putting the system with I, .o = o4 at xy it remains there
urtil the driving process jumps to — o4 which needs in
average the time 1,2 Then due to the nonvanishing flow
F_,,(xp) the system is reflected into support. We call this
type of boundary condition natural reflecting [14],

Top (o) = 1004+ T—g, (x). )

In Fig 1. both types of boundary conditions are illustrated.
Moot of the previous work deals with absorbing boundary
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-conditions,. only very recently the.case of immediate reflec-
‘tion was:&onsidered in some detail [13]. There, in the ap-
pendix, a réflection with finite rates but of different nature
‘than considered here was also discussed:

£

exit  injection

X. Xg e

X~  support Xy X

Fig. 1

Typical shape of the probability density in the considered parameter
region, The system is injected at xo. We ask for the mean time the
system needs to reach xg The boundary conditions at the end
points of the Interval # become obvious looking at the flow X, =
F,(x;) which is shown in the lower part for the realizations J = 4
(solid arrow) and /, = — 4 (opon arrow)

From (1) an equivalent first order equation for T is read- T,

ily obtained :

B FE T A (FoFog — 20N Tg =2a. ®
The natural reflecting boundary conditions transform to
Ty (X5) = —2/F-g, (%), Toylxs) = 0. 9)

Obviously, Eq. (4) can be immediately integrated up to
quadratures [4~14]. For F,(x) polynomial in x of order n
these quadratures can be evaluated analytically in terms of
hypergeometric functions of n—1 arguments [14].

To be specific we now consider the Stratonovich miodel
(2) choosing a starting point x, and an exit point xg < X, S0
that the other end point of the interval is the natural right
boundary xg = x., (cf. Fig.1). Then one obtains after
straightforward but length calculations [14]

Ty (x0) = 2 [2(24+ )% ]™!

. %o (2'++])m+n(1+}'++;'—)m(1"‘)--)n
im0 (24 + 2 en(l +m+n)min

P2 ) R [T Fm+n A, —2_,2,+2,2
(10)

+ m 1,25 (o), 2 (Xo)] + 1o+ T (x ),

where

(11

z(x) = (%4 = x)/x%, 22 (%) = (x4 — xD/(x% — xL),
and
T_(xy) = a[244 x4 ]!

s " ()~+)m+n(1 +'1~+ +'i—)m('—)'—)n
mnm0 (A4 + 1)y en(d +m4n)mtnl

27 (xg) 25 (xg) Fy A +mn =4, —A A,

+ 1,24+ m+n, 2y (xg), 2 (xg)] . (12)
In Fig. 2 the MFPT to reach the local noise induced max-
imum of Py(x), staiting from the local minimum of P(x),
i.6. Xg = Xmax and Xo = Xuin, iS shown as function of the
mean frequency o of the driving DMP. The dominant effect
seems to be that the MFPT diverges as Xy, reaches the left
boundary of the support x.. (cf. lower part of Fig, 2). This
is clear since the flow for I, = — 4 vanishes near the bound-
ary x_ as %, = —(x,—x_) x2. Here, both initial and exit
points depend on parameters. Introducing (xo — xg)/ T, one
finds that this quantity systematically increases with increas-
ing a, i.e. the noise induced state is reached as “faster” as
faster the driving processes is [14]. This agrees with the
tendency that the MFPT to reach a preassigned value in-
creases with increasing correlation time observed for differ-
ent models driven by several types of colored noise [6,30].

5 -

0 } | I
05 15 —

a/(28)=0.6 16 24

«»0

0

X X4 X Xy %o Xe

Fig. 2

MFPT T, (xu,) for the Stratonovich model to reach the noise in-
duced local maxmmum of P starting with ¢ = + 1 the local min-
imum. For a = 1.5, 4 =1 we compare the exact result (solid line)
against the noise parameters «/(24) with a digital simulation from
10" realizations (full circles) and the simple approaimation (13) (bro-
ken line). The lower part exhibits P (x) for characteristic parameter
values
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The finite support (which results from the multiplicative
coupling of the noise and:its finite space of states) and the
peculiar behaviour near its boundaries-make a steepest: de-
scent approximation. unfeasible where the finite boundaries
are replaced by infinite ones, Instead, a simple approxima-
tion is obtained from the rigorous result (10) as [14]

. 1 @ X% —xb
T+(x°)~x2+[-a+2x2+ Py )
xi—x%]
+x%;—x3. + 1/a. ‘

The problem to calculate the MFPT to reach the local min-
imum X, starting from the local maximum x,,, of P(x)
which is more close to Kramers' escape problem [31] (for
a recent review see [32]) can be treated in a similar way.
The calculations slightly modify since then xy = x_ and
Xo = Xmax < Xg

We furthermore mention that a-superposition of N in-
dependent realizations of the DMP scaled in an appropriate
way gives in the limit N— oo the Ornstein-Uhlenbeck proc-
ess. Already a finite sum DMP's (pregaussian noise {33])
models some characteristics of the Ornstein-Uhlenbeck
process. In this case the support is finite too, and stratified
into regions which cannot be left for a given realization of
the pregaussian noise. At the boundaries of these regions
similar conditions as developed in this paper hold,

In the next Section we consider the NLRT which char-
acterizes the relaxation of the mean trajectory {xZ) to its
stationary value a starting from x2;,. We compare the result
with the MFPT to reach xg = ' starting from Xo = Xuie»
Turer(xo) = [T (o) + T (x0)]/2.

3, Nonlinear Relaxation Time

The NLRT of a function ¢ (x,) of a stochastic process x,
{5 defined as [34]

faon—n  J axa@ow

supp
Thirr = = )

(Do — (s (P — (P
where (¢), = § dx P,(x) ¢(x) and Pi(x) = <8 (x — x)pPM
supp

(14)

is the time dependent probability density, and Py(x) and
P.(x) are the initial and stationary densities, repectively. The
quantity

ool
a®) = [ dtR( ~ R ] (13)
can be determined without explicit knowledge of P, (x) as

follows.
Introducing B, = (P, Q)" where Q,(x) = {/,6(x—x)))
DMP the Kolmogorov forward equation reads

(%, g

T \4*o.¢g 2a+6xf)’ (16)

B=L®-P,L=

After time integration we.obtain

Ps_PO'_"_Z'Q’ (17)

-]

§ de

0
[0:(x) — Oi(x)]. We proceed:integrating the first compo-
nent of (17) between one boundary of the support, say x_,
and x with the result

where ¢ = (1, 02)7, @1 given by (15) and o, (x) =

6w = wE~R = Wa@-gWew. 09

In (18) we have imposed that the probability flux

Ji(x) = f)Pi(x) + g(x)Q: (%) (19)
vanishes at the boundaries xp = x,. Eq. (19) can be used
to eliminate g,(x) in the second component of (17). We fur-
ther impose that in the stationary state the probability flux
vanishes everywhere, J; (x) = 0, and that there are no initial
correlations Qp(x) = 0. Thus we obtain a closed first order
equation for g, (x),

20/ 97" 0 + O (Fy Fog™' > @) = — H(x), (20)
where H = 2« G/g + 0,(Gffg) + Ff/g. Eq. (20) is readily
solved up to quadratures as

o) = P,(x)[ [ dy HO)ED) "
e 1

S CLCI, H(y)/E(y)],

the integration constant was determined by the normaliza-

tion condition j dx 0,(x) = 0. Note, that the stationary
supp

probability density [35]

~9g

= _g — T )y f =
P(x) = NF+ o cxp( 2axj._ dy A F..) o

E(x)
(22)
solves the homogeneous part of (20) and that the normali-

zation factor N cancels out in (21).
We finally write the NLRT as

1%
m}_ dx(P(x) — <$>)

+ Py(x) ,5 dy HO)E().

Thirr =
(3

In the limit of the Gaussian white noise the result [23] is
reproduced.
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Similar to the. MFPT, the integrals in (23) can be evalu- -

ated in terms of generalized hypergeometric functions of
‘multiple arguments if ¢ and F are polynomial in x.

The choice- ¢ (x) = f(x)/g(x) makes the integrals in (23)
especially simple. For the Stratonovich model we investigate
therefore the relaxation of the second moments {x*, to the
stationary value (x®); = a from the initial value x3 =
xZ;, in the parameter region considered above.

After some algebra we obtain

TRt = =5 [mM-jdxmmm4. (24)
Xo —~4a X
The evaluation of the integral yields
Xs ) a x¥+ (24)' ~2-
xj'_ dx Py(x) Inx = Inx_ + XA B 1)
Lol . —
(;'4« + )'-)m (1 ;'—)n (25)

im0 A +l+mE+nt+1)-(Ay +m+nymin!

‘z (x_)"“” .

t
0 N MFPT
| )
*
\‘r1~_
NLRT
0 | ] ]
as 15 —
Fig. 3 “/(26)

NLRT of the second moment T gy for the Stratonovich model to
reach the stationary value a starting from x,, fora = 1.5, 4 = 1
{broken line) against the noise parameters a/(2 4). We compare the
NLRT with MFPT Tygpr = (T + T-)/2 to reach first the value
a'? starting from X, (solid line). The results of a digital simulation
from 10°—10° realizations are indicated by the full rectangles and
full circles, repectively

t
05
0 |
! alA
Fig. 4

The same quantities as in Fig. 3 against the control parameter a
forx =364 =1

In Figs. 3 and 4 we compare the NLRT given by (24) with
the MFPT to reach x; = a'? starting from xo = X, The
analytic results for both NLRT and MFPT are checked by
a digital simulation.

Both characteristic times have the same order of magni-
tude, and show a similar behaviour in dependence on sys-
tem’s and noise parameters. For slow processes MFPT and
NLRT come very close, the difference enlarges however if
the driving process becomes faster and the control param-
eter reaches the critical point.

A more detailed derivation and thorough discussion will
be published elsewhere [36].

Valuable discussions with Peter Hiinggi, Frank Moss, and Peter
Jung are gratefully acknowledged.
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We illustrate how first passage times can be calculated in systems with disorder. We use a renormalization

approach to discuss first passage times in onc-dimensional continuous time random walks and on deter-

ministic fractals. We discuss the phenomenon of ficld-induced trapping on a random comb, Finally, we

calculate mean first-passage times for one-dimensional random random walks, and discuss, in particular,

the casc of Sinai disorder, In a short Appendix, we show how mean first-passage times can be calculated

for an arbitrary inhomogeneous continuous time random walk in one dimension, using a recursion relation
similar in spirit to the renormalization approach,

1. Introduction

We are celebrating the 50th anniversary of Kramers’ sem-
inal paper [1] on thermal escape over a potential barrier.
As is indicated by the vast literature on the subject, there
has been a great deal of effort in trying to improve and
generalize the results of Kramers [2]: One of the challenges
has been to obtain results for thermal escape in higher-
dimensional systems. Another challenge, the one that we will
address here, is to study transport and escape phenomena
in systems with disorder. The paper by Kramers is known,
among physicists, mainly in relation to the result for the
transition rate in a bistable system in the high-friction or
Smoluchowski limit. This result, however, was anticipated
by earlier results on first passage time in a one-dimensional
diffusion process (and by the “flux-over-population” calcu-
lation for the transition rate) [2]. There has also been a lot
of progress in the calculation of first passage time properties,
especially in one-dimensional systems [3]. Here we will
briefly review how first passage time densities and their mo-
ments can be calculated in an elegant way, using renormal-
ization procedures, and how these results can be applied to
study transport properties in systems with disorder [4].

We will discuss four types of models that have been in-
troduced to study the properties of systems with disorder.
One of the simplest approaches is based on a description in

*) Permanemi address: LUC, B-3610 Diepenbecek, Belgium.
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¢, VCH Verluysyesellschaft mbH, W-6940 Wenhein, 1991

terms of a continuous time random walk on a regular lattice
with an effective waiting time density that captures the es-
sential features of the disorder. This approach was adopted
with-success by Montroll and Scher [5] in their paper on
anomalous transport in amorphous semiconductors. In Sec-
tions 2 of this paper, we will illustrate how first passage time
densities can be obtained for biased random walks on the
line, using the above mentioned renormalization procedure.

Systems with disorder lack translational invariance. In
many cases, however, it is found that they are characterized
by scale invariance. This suggests that the study of transport
on simple scale invariant structures, such as deterministic
fractals, is relevant to the understanding of transport in sys-
tems with disorder. In Section 3, we illustrate how the re-
normalization approach, applied to continuous time ran-
dom walks in one dimension, can also be formulated for
deterministic fractals.

A third way to model disorder is to consider a simplified
random model, which hopefully displays transport proper-
ties similar to that of the physical system. An example is the
random comb, which is discussed in Section 4. This model
is of interest because it displays a transition between field-
induced convection to field-induced trapping.

Finally, in Section 5, we calculate the mean first passage
time in a so-called random random walk (in one dimension).
We discuss in particular the case of Sinai disorder, which
corresponds to the case of a random walk with symmetric
disorder.

0005-9021,91,0303-0342 $ 3.50 + 25,0
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A typical feature. of all these models is that disorder can
give rise to.anomalous transport. By this, one usually means
that:the dispersive motion is subdiffusive (cf. Sections 2 and
3), or that.the convective motion is sub-ballistic (in the pres-
ence of a field, cf. Section 4). In the context of Kramers

escape, the density of escape times may be non-exponential’

(cf. Section 5 for an example).

2, Renormalization of Biased Continuous Time Random
Walks

We consider a continuous time, nearest-neighbour- ran-
dom walk on the set of natural numbers i = 0,1,2,.... The
walk is characterized by the waiting time densities pQ@(7)
and p®(z)for the walker at any site i > 0 to step to the
sites i-+1 and i—1 respectively, after a residence time at i
equal to’t, The waiting time density for the walker, located
at the origin, to step to site -1 after a total time  is denoted
w¥(x). For simplicity, we will assume that these are also the
waiting time densities for the occurrence of the first jump,
which is the appropriate choice for a so-called ordinary re-
newal process,

Since

0 3
P = ‘j;.,,(gr(r) dr, ¢©= glp(.o.)(t) dt 1)

are the probabilities for stepping to the right or left at any
site i > 0(p @+ ¢ =1), we see that the case %> p® cor-
responds to the situation of a particle trapped at the origin
by a bias field equal to ¢ — p®, Our purpose is to calculate
the probability density for the escape time from this trap by
using a renormalization procedure. Apart from giving a new
and elegant solution to this problem, the renormalization
procedure has also the advantage that it can be applied to
deterministic fractals (cf. Section 3).

W) W

\ 4

Fig. 1
Renormalization of a biased continuous time random walk in one
dimension, with a reflecting boundary at the origin

The procedure is as follows (see Fig. 1). Starting from site
1, we decimate every other site on the lattice. The decimated
lattice has the same structure as the original one, but the
renormalized waiting time density, e.g. p¥(z), gives the
probability density for the waiting time to go from a site
(say i) to the appropriate next nearest neighbour (i 4- 2). This
transition can be realized by an arbitrary number of excur-
sions to the nearest neighbours, i+ 1 or i — 1, and returns
to i, followed by the final excursion to the next nearest neigh-
bour i 4+ 2. Moreover, the partial times spent in these various

excursions-have to add up to 7. In terms of Laplace trans-
forms, a convolution becomes-a product, and we get the
following simple result:

P() = [BLET + 2¢26) P26 [PR)]?

(22)
+ PSPPIV +
-or
#9() RE240IN 23)

T 12999 920)

Here, the superscript ~ denotes the Laplace transformed
function,

7o = e s ar. 24)

Since the decimated lattice has a structure identical to the
original lattice, the renormalization equation will have a
form identical to the one above, at any stage of the-deci-
mation. Similar cquations arc casily derived: for the other
two waiting time densities, and we find (dropping for brevity,
the s-dependence):

o o L~
'P('i') = 1 _2!;)(_;-!) q",(:_—l) (2'5a)
s(ne=1)72
~(n) [!P-' ]
P = 1—2¢0- D e (2.5b)
et} =1
P9 = oVl (2.50)

1 __'i"(:—l) !pgl—l) '

Before we give the solution to these recursion relations, we
make a few comments. First, the waiting time densities
% and p® are, in fact, the first passage time densities to
the sites at a distance -+2" and —2" of the considered site
on the original lattice (assuming, of course, that the initial
site i is sitvated sufficiently far from the boundary at 0, i.e.,
assuming that i > 2"), p{ is the first passage time or escape
time density from site O to the site at the position 2" on the
original lattice. Second, normalization implies that $@(0) +
$9(0) = 1 and $P(0) = 1. This normalization property is
preserved under renormalization. Finally, a remarkable fea-
ture of the renormalization equations is that the s-depend-
ence of the functions { plays no role in the solution of these
recursion relations.

To solve the renormalization Egs. (2.5) we first notice that
Eqgs. (2.5a) and (2.5b) are closed in . and $_, and can be
rewritten in the following convenient form:

50 50— 72
P+ [_‘P_—»__] (2.6a)
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Vapeee
- ()
VA g

1 2
T
Vare e

(2.60)

where T3(z) = 2z% —1, is the Chebyshev polynomial of or-
der 2.
The solution of Eq. (2.6a) is obvious:

On the other hand, Eq. (2.6b) is, in fact, identical to the
logistic map at fully developed chaos. Its solution goes back
to Von Neumann and Ulam, This solution is easily obtained

using the following definition and property of the Chebyshev
polynomials:

27

T.(z) = cosh(ncosh™'z) (2.8)
Tu(Tw (@) = T (2). (29)
Hence

L o ( 1 )

e 2t < (0) .~
YAy P Vapi o (2.10)

1
= cosh (2" cosh™! ——.::-__—-_.-—-)
Vaws 2

where cosh™! denotes the inverse hyperbolic cosine. Com-
bining Egs. (2.7) and (2.10), we conclude that

o _ VU

Py = 2cosh(2"¢) (2.11a)
and

o W ottt
W = o :
where £ is defined by

coshé = 1/)/49p9 ¢9. (2.11¢)

For the case of a Markovian walk with jump rate k, namely,

BOES aa s (2.12a)
§9(s) = ¢ (2.12b)

k+s

one finds:

" p(o) 2" 1
240 =< 7@‘) 2c0sh(2"¢)

(2.13a)
© 1
s = ( (9} — 1
P(s) ( p(0)> 2cosh(2"E) (2.13b)
with
coshé = — < +S (2.130)

2k)/p9q®

These results can also be obtained using the known results
for the Green function of a biased random walk [6,7], and

the renewal equation (with appropriate boundary condi-

tions) linking the above first passage time densities to this
Green function,

Let us now turn to the solution of Eq. (2.5¢). This equation
is linear in 1/« and can be rewritten as follows:

1 1
)

S = e~ | (2.14)

¥n

where y, is given by (cf. Eqgs. (2.11)):

(1) yx(n—1)
_p0ptmh 1
Tn = TR T 2cosh2 e @13)

Eq. (2.14) can easily be solved recursively, and one obtains;

1
Y1 ¥2e0e7n ~(,,, 2” = !P(—o) li)ﬁ” 216
—(Hntnnt o Enre-n).
From the identity
sinh(2¢) = 2sinh& cosh¢ (217
it follows that
—m ilj 2cosh(21¢) = -SI%:;(% (2.18)
On the other, the identity
1
coth(2€) = coth& — ShEE) 219

yields

1Y+ VYot ot »—1 = sinh(2 Z
N+ Tiee-Yn—1 29), <1sinh(2'8) (2.20)

= [coth& —coth(2"€)]sinh (2 £).
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Hence
Py =— -
: n 1 — nEY
sinh(2 é)[w 70 smh(20) + coth(2"¢) cothé]
(221

where ¢ has been defined in Eq. (2.11c). The results (2.11)
and (2.21) are the exact solutions of the renormalization Eqs.
(2.5), for general “initial conditions” $Q, $@ and ¢, In case
of Markovian dynamics (cf. Egs. (2.12)), with

kp®
50 = b
I T

el 222)

Eq. (2.21) reduces to

o o /TP sinhe
O k@ 4 1) & /g PO sinh2"¢

(2.23)

again a result which can be obtained from the renewal equa-
tion linking the first passage time ${ to the known Green
function of a random walk with a reflecting boundary con-
dition at the origin [6,7].

Fig. 2
Renormalization of a continuous time random walk on a Sterpinshi
gasket

3. Random Walks on Deterministic Fractals

The renomalization procedure that we have discussed in
the preceding section can also be applied to simple deter-
ministic fractals, such as the Sierpinski gasket (cf. Fig. 2). At
each stage of the decimation, the smallest triangles are re-
moved, and the first passage time density to the four new
nearest neighbours is calculated. The renormalization equa-
tion has the following form (compare with Eqs. (2.5)) [8],
see also {9]:

SO

g (3.1)

Note again that this equation preserves the normalization
@"=Y(s=0) = 1 implies that $®@(s=0) = 1). The mean
first passage time {(z™) to reach one of the four nearest
neighbours on the n-times decimated lattice is given by:

dip®
ds

"y = — (3.2)

sm 0

Eq. (3.1) then implies the following simple recursion relation:

@ = 5=y, (33)
Hence it takes (on the average) five times as long to go twice
as far (since the distance under consideration doubles after
each decimation?. This is in agreement with the well-known
subdiffusive behavior on this fractal. Higher order moments
can be obtained recursively by calculating successively
higher order derivatives of both sides of Eq. (3.1). It is, how-
ever, possible to write the explicit solution of Eq. (3.1), by
introducing the analytic function f(x) that is a solution of
the following nonlinear scaling equation [8]:
43 (x) = 3/(x) = f(5x), SO) = f/(0) = 1. (34)
One can show that such a solution exists and that it is
unique. The solution of Eq. (3.1) can then be written as
(compare with Eq. (2.10)):
1) = f15" S~ 1P (6] (3.5)
where /= is the inverse function of £, A number of properties
of fcan be derived from Eq. (3.4). Moreover, it represents
the solution to the quadratic map x, = 4x2_; — 3x,_; (ob-
tained from Eq. (3.1) by setting x, = 1/$™), and is therefore
related to the study of (transient) chaos in such discrete maps
[8,10].

4, Escape and Field-Induced Trapping on a Random Comb

An interesting feature of an external bias on a system with
disorder is that it can have a dual effect: on the hand, it
induces a drift in the direction of the field; on the other
hand, it can create traps, if the network possesses dead-end
branches. To participate in the convection, particles have to
escape from these dead-ends. This becomes increasingly dif-
ficult as the amplitude of the field increases. The question
arises as to whether there exists a threshold value of the
field, above which the drift velocity vanishes.

A model for which this question can be investigated in
full detail is the random comb (see Fig. 3) [11]. A particle
performs a random walk on an infinitely long linear lattice
(the backbone) with branches of random length emanating
at random from the sites of the backbone. We define the
following probabilities (see Fig. 3): q is the probability to
make a step in the “backward” direction, while p and p — p;
respectively, are the probabilities for a “forward” step on
the backbone at a non-vertex point (i.e., no side branches).
and at a vertex point. In the last case p, is the probability
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Fig. 3
Biased random walk on a random comb

to move.into the side branch.gy is the probability that a
side-branch-has a length N(N=1,2,...), and

@1

7= NZ-I on

is the probability that a site is a vertex. An explicit mean
field calculation [11] leads to the following value of the drift
velocity along the backbone (for p # g, and choosing the
unit of time to be equal to the mean waiting time betwect:
jumps):

i SO, _ p—

[ ] t

q
L, on(pla) —246)

4.2)

Ta “Pl)(P 9

Note that vy will vanish in the limit of a symmetric waik
p—q, as expected, but also in the case when

o0

I oulpla)" @3

diverges. An interesting situation displaying a non-trivial
“critical” behaviour is that of an exponential probability
distribution for the branch length N(N=1,2,...):

ay = o exp(—eN) (1) (> 0). 44)
Such a distribution has the form of a Boltzmann factor with
¢ representing the “cost” in energy per site. (If the branches
are imagined to represent — albeit crudely — finite clusters
attached to the backbone, such an exponential distribution
of cluster sizes is not unrealistic, with ¢! standing for the
cluster size lengthscale). For this model, a finite drift velocity
is obtained for values 1/2 < p < p,, with the critical value p,
given by

e D _ 1
€ 1—Pc_1’ or p°—1+e"°'

4.5)

As ¢, the energy-cost per site in the side branches, increases
from 0 to oo, p. goes from 1/2 to 1. We note that v, goes to
zero linearly with (p. — p) in the vicinity of p.:

@p.
apl pc

—1)(1—py) )

va ~ (pc—p) (4.6

Beyond p,, it can be shown that sub-convective behaviour
sets in, with [11]

p
T > @

m@) ~ ¢ 5

5. Random Random Walks

Consider a random walk on the set of integers, such that
a walker can move to the left or right at each-Site ie Z with
transition rates equal'to &~ and k* respectively. Further-
more, suppose these rates are themselves random variables,
identically distributed but independent from site to site,
while the rates at the same site are possibly correlated. To
obtain some insight into the transport properties of such a
random random walk, we investigate the analogue of the
problem discussed in Section 2. A particle starts at the origin
of a semi-infinite lattice with disorder (of the kind just des-
cribed), How long will it take to escape to a certain distance
i_from the origin? To calculate this time, we will use the
following exact result for the moments T, = {t") of the first
passage time t to go from a site iy to i (where i> i) in a
raarest neighbour random walk with general transition rates

(7

s Tama (1) PE)

lllo) = Z k',*, P(r)

G

r---fo S =00
Here Ty =0, and the lattice extends to —co. P{s) is the
steady-state probability distribution for the same random
walk with a reflecting boundary condition at s=i (i.c.
kit.y = 0), namely,

_ kS kGe kT L
P(s) = P P@i—-1). (5.2)

P(i—1) can be found from the normalization condition (we
are assuming that this normalization factor is finite, i.e. that
P(s) exists). In particular, the mean first passage time T {i{0)
to go from zero to i, when there is a reflecting boundary at
the left of zero, may be obtained from the foregoing general
result by setting k;- =0 and P(0) = 0. We get

i—-1 k._ k_
Z [___+ z s+l r—1 ]
s+l -k -lk+

r=0 k.' S=OI\

T, (i]0) = (5.3)

In the Appendix, we show how this result can be derived in
a simple way using ideas similar to those of the renormal-
ization procedure discussed above. The rates at a given site
are possibly correlated, but those at different sites are not.
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v

The average over-the disorder can thus easily bé carried out,
" and one finds [7], see also [12]:

Ti00) = g )l 1+ i =]

(54)
where we have defined
%
)

We emphasize that two kinds of averages are-involved, an
average over the statistics of the random walk (T is the
mean first ‘passage time for a given realization. of the
quenched disorder), and one over the disorder (denoted by
the overbar). The foregoing calculation also applies to the
case of non-random constant rates k* and k=, and the result
is identical to ‘Egs. (5.4) and (5.5), with the overhead bars
removed. In the calculation above, we have introduced a
reflecting boundary at O to guarantee that a finite mean first
_passage time exists. In the case of a disordered system, with
a mean bias pointing away from-0, i.e. g < 1, we cxpect that
this boundary condition becomes irrelevant for the behavior
of the first passage time in the limit i—co. In this case,
Eq. (5.4) reduces to

— 1 1
© T,(il0 =—-———-<——-—)i 5.6
0= 1—(;3 (56)
which is identical to the result for an ordinary random walk
with the drift velocity - ‘ -

1 ( 1 )

Y= ol B 57
el e (5.7

This straightforward calculation thus leads quite easily to
the evaluation of the cffective drift velocity of the random
random walk. Eq. (5.7) is identical to the result obtained by
Derrida [13] using a much more complicated procedure, In
a similar way, tlie calculation of the second moment 7> leads
to the correct value of the effective diffusion coeflicient [7].
One should, however, be-careful in extrapolating results
from configuration-averaged first passage time properties
directly to actual transport properties of the disordered sys-
tem. To illustrate the sort of problem that can arise, we
discuss the case of so-called Sinai disorder [14].

A random random walk with Sinai disorder is character-
ized by the following additional properties:

—Ta —T
In (—I&:) =0 lnz(ﬁ:) <0,
ki k;

3

(3.8

The first cordition indicates that the disorder 15 “symmetric
on the average”, i.e. a bias to the left and to the nght are
eyually probable at any site, The second condition puts a
limit on the strength of the disorder. Under these conditions,
Sinai [14] showed that while the position of a4 walker does

not change on the average, its-root mean-square displace-
ment grows extremely slowly with time, namely:
{2()) ~ In't. (5.9)
The result (5.9) can be easily understood as follows [15].
One can view the presence of a local bias k;* > k™ as a
small increase of an effective potential in which the particle
is moving. An opposite bias ki* < k™ corresponds to a
decrease of the potential. Since the rates at different sites are
independent, the potential U which one thus obtains in func-
tion of i is itself like a realization of an:(uncorrelated) ran-
dom walk (in the variable i); hence the amplitude of the
fluctuations of the potential |/ (AU?) over a region of length
i, will be typically of the order of }/i. In order to cover such
a distance, the particle has to overcome a barrier of typical
height }/(AU?Y, and the time needed to do so is:

RETS ., oV (5.10)

T~e
This explains, heuristically, why the length scales as the
square of the logarithm of the time in this problem. The
forcgoing behavior of 7 is surprising, for the following rca-
son. We have seen that the disorder-averaged méan first
passage time must in fact be essentially the same as that of
a particle trapped at the origin by a certain constant effective
field biased towards the origin, in-a random walk without
any disorder, The latter mean first passage time has been
found in Eq. (5.4). Now, using Jensen's inequality, we find
that

In k s ln(l,::) = Ing.

The Sinai condition (5.8) therefore implies that the effective
bias is directed towards the origin (g > 1). For large dis-
tances i, one then gets (employing the standard Arrhenius
form for the escape over a barrier)

(5.11)

T,(i]0) ~ ¢ls, (5.12)
This is in sharp contrast to the results of the heuristic scaling
arguments given above, cf. Eq. (5.10). This discrepancy was
first noticed and explained by Noskowicz and Goldhirsch
[16]. The explanation is in fact quite obvious: the average
over the disorder in Eq. (5.12) is dominated by the config-
urations in which the effective potential, that the particle
has to overcome, is of order i rather than the typical value
]/f. These configurations have an exponentially small prob-
ability; but the corresponding first passage times are expo-
nentially large, and they dominate in the calculation of the
average. Eq. (5.12), even though an exact result, is atypical
for Sinai disorder and does not describe the typical first
passage time dynamics that one observes in this case.
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Appendix.
First Passage Tiines for Inhomogeneous Continuous-Time
‘Random-Walks in One Dimension

We consnder a continuous-time random. walk on the set of in-
tegers, characterized by the site-dependent waiting time densities
it (t) and $;(z) to jump from i to i+1 and i—1 respectively at
time  (without first jumping to the other neighbour). To calculate
first passage times on.this lattice, we first consider the first passage
time to go from i to i+ 1 (involving any type of excursion to the
left of i). Clearly such.a first passage can be realized by n jumps to
i—1 (where'n = 0,1,2,.. ) each followed by a first passage back
fromi—1toi,andafi nal jump from i to i+ 1, Hence, one obtains
the following exact recursiofs. " ation for the Laplace transform of
the first passage time density Fi* () to go from i to i+1:

],’w(s) = Bt (s) (A1)
‘ 1= () Fiea(s) '

By setting s =0 in this equation one gets the following recursion
relation for the probability P;* for a first passage to take place (at
any time) from i to i+1:

1]
P = ee——, A2
=T *2
Here p; = §i* (0) and q, = 97" (0), and we have of course p; + ¢, = 1.

Note that Pi = 1 is a fixed point of this equation. We will assume
that this is correct solution for the case under consideration, i.c.,
first passage occurs with certamty By differentiating both sides of
Eq. (A.1) with respect to s and setting s = 0, we obtain the following
recursion relation for the mean first passage time 7, (i -+ 1]i) to go
fromitoi+1:

Ty +1]i) = <"> %‘ Ty(li—1) (A3)
i

where

(@ = = [ + i lmo (a9

is the average residence time at site i. By iteration, one finds (pro-
vided the series converges)

&,y 4.9 4=

T+ i) =
1 1= b l--—°° bi P P

(A.5)
Since

Ty +nji) = Ty(+11i) + T +2li+1) o + Tili+nli+n—1)

(A.6)

one has
r
Ty(m)mg) = Z [<1'> y & 9 .Sﬂ] . %))
br =% Py bi  Pi-1
Note that the above derivation is independent of whether the time

variable is a discrete or continuous variable, so that Eq. (A.7) also
gives the mean first passage time for discrete time dynamics. For

the case of a Markovian walk, with site-dependent jump rates &;*
and &~ -for jumps from j to j+1 and j—~1 tespectively, one has

ok !

P T (A8
We thus recover the familar result

meir g k- ki ]
Ty(mlmo) = Z [k* +) Z’w e A9)

in this instance.
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Colored Noise ] Inversion States / Nonequilibrium Phenomena | Nonlinear Phenomena

‘We consider bistable dynamics driven externally by a noisy harmonic oscillator, For small damping we
derive a Markovian approximation for the energy dynamics. In conclusion.we discuss the possibility of
the inversion of bistable oscillators induced by colored noise.

1. Introduction

The coordinate of a white noise driven harmonic oscil-
lator is used as a stochastic source term in bistable dynamics.
This simple picture on the one ‘hand side generalizes the
concept-of colored-noise where usually the Ornstein-Uhl-
.enbeck-prucess is applied to nonlinear dynamics [1]. On
the other hand our picture gives risé to resonance phenom-
ena as they are studied in the case of Duffing oscillators [2].
In that case a phase- and amplitude-stabilized periodic func-
tion is applied as a driving force on-the bistable dynamics.
This requires generally a nonlinear driving element to gen-
erate the phase and amplitude locking.

Contrary, we think that our situation is simpler since it
implies only linear elements in the generation of the noisy
periodic force. Also we will assume mean energies of the
driving oscillators much smaller than the energy barrier of
the bistable oscillator-aiid the resonance phenomena will be
of stochastic origin due to amplitude and paase flurtuations.

We see many similarities to the investigations which now-
adays are discussed in the framework of “stochastic reso-
.nance” [3]. We want to point out that this resonance cor-
responds more to a modulation since the harmonics of the
process are determined by the frequency of the driving func-
tion. In contrast to this we will obtain transition frequencies
between the two attractors of the bistable dynamics quite
different from that of the driving force. This is due to res-
onance effects between the noisy driving oscillator and the
bistable dynamics (comp. [4]).

_The model we studied consists in a four-dimensional Mar-
kovian dynamics [3,6] (similar proposals were made in
Refs. [7], our model describes situations which are related
to the microwave modulated Josephson-junctions [8])

X=u V= —yo + f(x) + (@) 1.1)
y=s5 §=-TIs—Qy+ BY2eE)
where &(t) is white noise and this stochastic source term 1s
scaled in such a way that ¢ is the intensity of the noise y()
in the white noise limit if () I' — 00; Qp — 0; /R =1 =
const; ¢ = const and (ii) T — 0; ¢ = const. We suppose
bistable forces f(x).

Let us shortly characterize the dynamics of the driving
system [9]. Under the condition Q3 > I'?/2 the spectrum
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_ 2¢08
T (@ T? + (0 - Q22))

Syy (@) (1.2)

possesses a peak at w, = (@3 — I'’/2)"”? corresponding to an
oscillating correlation function, The stationary probablity
Aistribution density (p.d.d.) is a Gaussian one and an effec-
tive temperature of the noise can be introduced by

4

Tin = 509 + 2 apy = > = o 2.

T (1.3)

We see that the guality factor @ = Qp/I" influences strongly
thé effective temmperature.

For fixed temperatures Tyy and fixed ¢ by changing I we
distinguish three typical regimes of transitions between the
two stable attractors {6]:

(i)~.%or small I" (2, small as well) it yields a modulation
of the bistable oscillator, Once the harmonic oscillator
reaches high energy it is sfowly damped out. In this situation
the bistable oscillator is forced by the noise to move with
the frequency of the applied force;

(ii) For large I' the oscillatory character is suppressed and
the noise is effectively white. Transitions are very rare;

(iii) If for medium I the effective frequency of the har-
monic noise equals to the frequencies of the bistable dynam-
ics in the attractor region transitions occur rapidly due to
resonance. The mean transition time is of several magnitudes
smaller than in the white noise case.

The maximal number of transitions occurs in the reso-
nance reguite. For this case we draw in Fig. 1 the waiting
time distribution for an escape. It shows an exponential
decay with small peaks at the subharmonics (comp. [4]).
The transitions, therefore, are mainly of stochastic origin.

Some properties of the resonant regime can be understood
by investigating the effect of the harmonic noise on linear
systems (i.e. f(x) = —w} x in Eq. (1.1)). Then the corre-
sponding stationary Fokker-Planck-equation for the four-
dimensional dynamics can be solved exactly. It is a Gaussian
distribution and the mean energy of the driven oscillator

1 2 o 2
E)= 3 Av)*> + > (Ax)% (1.4)
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P we propose a Markovian approximation for the dynamics
of the energy of a harmonic noise driven bistable oscillator,
which will be valid for sufficiently small 7.
) 2. Markovian Approximation for the Energy Dynamics in
NI the-low Friction Limit
We consider the damped oscillator driven by harmonic
noise and introduce the potential V(x) (f(x) = —V'(x))
‘ . . d-v
il \HHI'”H\MII! e -
stl
+ L The energy E = v*/2 + V(x) of this system will be a slow
.29'_ Tmax M variable in the low friction regime if
P 7 <15 <0, 22
Fig. 1

Waiting time distribution for transitions in the Duffing oscillator.
The characteristic times of transitions (the most: probable T, as
well as the mean time (7°)) are quite different from the character-
istic time- of the driving force 2n/Q,

€>

Fig. 2

Mean.energy <E) in dependence on the frequency of the driven
osciliator @, for the lincar system, The elfective frequency of the
driving oscillator is @, The full line is the result for the exact
solution; the dotted line is the result from Eq. (2.13)

with the standard deviations

((Av)i> = T T wzc 1 3TsY3Y] (1.5)
0 (1 - wi/Q%)
”(‘:E(y Ry ) T T )
and.
Ax®
e

= T (1 +9/Ty

oi(r+ ol - TrrT TR TT)

(1.6;

shows resonance (Fig. 2).

In reference [6] we derived a Markovian approximation
for the dynamics of the bistable oscillator in the phase space
(>, v) and for the overdamped bistable system following the
ideas of the unified colored noise approximation [10]. Un-
fortunately the resulting Fokker-Planck equation for the
p.d.d. has been solved for the overdamped limit only
(y — o0), but not for the general case. In the next section

where w is the frequency for the motion in the potential and
Teor i the correlation time of the noise. The relation (2.2)
implies a Markovian approximation for the energy dynam-
ics. To obtain this Markovian description we use in the
following a modification of a method which has been
worked:out by Carmeli and Nitzan [11].

In a single potential well it is possible to introduce the
action angle variables (I, ¢) defined by the canonical equa-
tions

oH

OH
I=0=- =37

'ﬁ'; ¢ =) 23)
where H is the Hamiltonian of the deterministic system with-
out friction. For these new variables we obtain from Eq, (2.1)
the Langevin equations

LW( wEye); ¢ =)~

Expanding the coordinate x and the velocity v in Fourier
series

& (v +y0).04

+ . + 0o .
xhe)= L x,e"%o(g)= L v, @.5)
new - 7. —0
the Langevin equations result
n,m= 4o
I= —172 )3 15U e“"*’””‘+1y(t) E R i
400 4o dx
$=o+r2 Y Shnging,
n, mMw e~ d[ e w0
(2.6)

Then the time evolution of the p.d.d. for the action angle
dynamics P (I, ¢, 1) is given by the Kramers-Moyal expan-

sion
(AP (DA () P}-
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1f;reduc§s to the knowledge of the moments {(AD)™ (A¢*)).
Their computation can be redlized by- using the-iteration

Al (x) = } dsi(I(t)+ ALI{="(s), ¢ (0)+ A~V (s),t +9),
0
(2.8)

where the 'starting-point AI®? (s) = 0; A¢® (s) = w(l)s
follows from (2.3) and. I is given by.(2.6) (similarily for A¢)).

Corresponding to'(2.2) we neglect terms of order (y/w)"
and also (Z;(w)/w)" withn > 1 where Z; (w) are the Fourier
expansion coefficients of the stationary correlation function
of the harmonic noise. Terms of order " (n > 1) vanish in
the limit T = 0 and so we obtain as in the white noise case
that all moments with m + k > 2 vanish in (2.7). Because
of the periodicity of P(J, ¢, t) in ¢ we get after ¢-integration
and by transition to the energy variable (d/ = dE/w) the
Fokker-Planck equation for the dynamics of the energy
p.d.d.P(E, 1)

%—’: = % (w(E) (a, (E)+ &5(E) 'a'E')E) w(E)) P (2.9)
with
a() =2y X n*x}(E) (210
and
&(E) = :2; n* x3(E) S,y (noo(E)). (2.11)

where S, is the defined spectrum in (1.2). The stationary
p.d.d. becomes

E ’
PY(E) = N~'o~"(E) exp (—I dE’ Z'—?—;—,—;—) (212)
2

Generally the & (E) and &(E) have to be computed numer-
ically for nonlinear problems. To understand the mechanism
we reduce the description onto harmonic potentials V'(x) =
@¢x*/2. In this case all terms in the sums (2.10) and (2.11)
with n > 1 vanish and we obtain the stationary p.d.d.

P®(E) = N~ o7 exp (- 32 Y(fo)>. 2.13)
¥y

We sce the effect of the noise results in an effective temper-
ature which is determined by the spectrum. For the mean
value of the energy (E} = Sy,(wo)/2y follows a resonance
at wy = w, due to the peak in the spectrum of the harmonic
noise at wy,. For nonlinear potentials we et resonance phe-
nomena as well which result from &(E) m (2.12). But the
resonance frequency will differs from w, (cf. [8]). For har-
monic potentials an averaging over rapid oscillations in the

Langevin Eq. (24) leads in the low friction limit [12] to.the
same stationary p.d.d. P* (E) as the approach described
above. This implies that this approach can be interpreted
as.an averaging over the generalized phase ¢ in the basic
Eq. (2.6) for a nonlinear potential V(x).

3. Inversion by Harmonic Noise

For a white noise driven bistable oscillator the probability
to be in one of the two stable states is determined by its
energy value only. In this chapter we will show the possi-
bility of generating an inversion of bistable oscillators due
to the action of the harmonic noise. In detail this means
that due to the resonant activation we force the oscillator
to be in the state with higher energy. with more probability
than in the low energy state, For this purpose the high
energy state is detuned whereas the low energy state will be
in resonance with the harmonic noise. What follows is that
the oscillator will leave quickly the low energy state due to
resonance and otherwise will stay long times in the detuned
state.

To demonstrate this effect we consider the simple model

. . dv
X =1 v=—yv--a—£+y(t) 61)
ol

2
Wi
Epo + T(xk—x)z: x>0

Epp+ —(x—=x% x<0

Vix) =

of a bistable oscillator driven by harmonic noise (cf. Fig.
(3)). The essence of this model is the different energy levels
of the minima of the potential (which results in different
activation energies as well) and the difference of the fre-
quencies in the bottom of the wells.

\

Fig. 3

Bistable oscillator under harmonic noise Here 1s shown a nonsym-
metric bistable oscillator, where the frequency of the harmonic noise
is just about the frequency of the right well (w, &~ ). Hence the
transition rates are asymmetncally due to resonace like it 1s depicted
with the arrows
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If the barrier energiés Dy and Dy are sufficiently large

D> S, (@)/2y; i=LR (3.3)
than we reduce the p.d:d. in both wells to the canonic-like
distribution (2.13), i.e. we put in every well as an first esti-
mate

P(E) = Ni lo! eXp( yy(E)) 0<E<D,. (34

L and R correspond to the left and right well and the en-
ergies E; are measured from the bottom of each well. The
probabilities of the local states in the wells are

Dy
= ng Pi(E). (3.5)
Then the ratio
s = Pi/Py (3.6)

is the measure of the inversion. For our case, where we have
assumed D < Dy, the bistable oscillator will be inverted if
s > 1, The p.d.d. (3.5) to be in the right or in the left state
we obtain from the reduced dynamics
Py= —rp Py + o Py (C)]
where the rig and ry, are the rates to leave the left state or
the right state correspondingly. These rates can be calcu-

lated using the concept of the mean first passage time av-
eraged over the initial condition [13]

D Dy
IR =( (j) dEPP £ dx jd yPL())) (3.8)

w'(x)e (X) P(x)0

where P{* (E) is the steady state distribution in the left well

=1 225 {2, 09

Because of the validity of (3.3) we obtain for riy the ap-
proximation

2D]_, ! 2?DL) (3 10)

TR, @) k‘ S, (@)

(respectively for rg, by a change of L and R). Insertion of
(3.10) in Eq. (3.7) yields in the stationary case for the ratio
s

L. Schimansky-Geier-¢t al.: Harmonic Noise Driven Bistable Dynamics

Syy(wL)DR < . < DL DR ))
= ————exp|{ 2| e——v — . 3.11
Syy(wr) Dy P\=? Syplwr)  Syylwr) G11)
A resonance in the deeper right well (wg = ;) and a de-

tuning in-the left well can lead to a inversion with s > 1,
the resonance pumps the population in the state with the
higher energy. The problem is more complicated in the case
of more realistic bistable potentials with a continuous first
derivative dV/dx at the barrier. The frequencies vanish
w,—0as E—D, (i = L, R) and the low friction limit is not
valid. Therefore the properties in the wells and at the barrier
must be considered separately with some continuity con-
ditions [14,15]. By generalization of the result for our sim-
ple model it follows the possiblity of iniversion in such bist-
able systems due to resonance phenomena in the single wells.
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" Pair Nucleation Rate in a Driven Sine-Gordon Chain
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Thermal production of soliton-antisoliton pairs in.an overdamped driven sine-Gordon chain occurs

through the activation of-a critical nucleus. The relevant pair nucleation rate is calculated explicitly by

extending Kramers' theory to the case of an infinite dimensional, multistable system with one neutral
equilibrium mode.

1 Introdu;tion
The perturbed sine-Gordon (SG) equation [1]

P~ €& P + 0% SN =~y — F+ {(x,) (1)

provides an ideal model to study the nucleation processes
of a variety of physical systems at thermal equilibrium
[2—4]. For instance, in plasma physics o, and ¢, model the
plasma frequency and the sound speed, respectively. In
Eq. (1) the ordinary SG equation has been coupled with a
heat bath at temperature T through a damping term, —y¢,,
with y a constant, and a gaussian noise { (x, ) with zero mean
and.correlation function

CxDEx) =2 % 8(t—1)8(x~x) )

(B = 1/kT). The constant force F is meant to represent an
external physical bias which breaks the ¢ — — ¢ symmetry,
thus making the pair nucleation process possible [5,6],
but preserves the multistable nature of the SG potential
V[¢] = wi(l—cosd),ie F<

The unperturbed SG equation (i.e. Eq. (1) with the r.h.s,
set to zero) has been derived from the relativistically covar-
iant Hamiltonian density

HIGY = 5 (82 + ) + V4] o

and bears both extended (phonons) and localized solutions.
Localized solutions can be well approximated as an appro-
priate linear superposition of solitons, ¢k, and antisolitons,
¢g, in the limit when the separation among their centres is
very large compared with their size (dilute gas approxima-
tion). For later convenience, we write explicitly the single
soliton (antisoliton) solution (mod 27)

o XX
Prmlxu) = 41g™" exp [i (:‘)_o :ﬁﬂ(;l&] . N

Here, X{t) = x, + ut denotes the centre of mass of the so-
lution (4), which moves with constant speed u. ¢y, repre-
sents a dislocation of the SG chain between the potential
minimum at ¢(- x) = 0 and the adjacent minimum at

Ber. Bunsenges. Phys. Chem. 95 (1991, No. 3
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¢(0) = +2m, respectively, occuring at X (t) within a length
comparable with the ¢y, size c,/w,. The energy required
for the SG chain to bridge two adjacent potential minima
is E, = j dx H[¢k)(x,0)] = 8w,c, (soliton rest mass). A
statistical approach to the SG theory leads to the following
prediction for the equilibrium soliton (antisoliton) density
(F=0)

2\'? o, . .
={=] =2 2 a=BlEs
ho (ﬂ) Co (ﬁEo) ¢ . (5)

The dilute gas approximation is thus legimate in the low
temperature limit BE, < 1, where ™! > ¢,/w,. The soliton
and antisoliton solutions (4) carry opposite topological
charge and, therefore, they may only be created by the pair.
Furthermore, ¢k, are stable under the perturbation con-
sidered in Eq. (1), apart from a rigid translation, against
which they are in neutral equilibrium (Goldstone mode).
At this stage, the question arises as how a soliton-anti-
soliton pair may be nucleated starting from a vacuum con-
figuration, e.g..¢ = 0. Thermal fluctuations are expected to
trigger the process by activating a critical nucleus, the size
of which may be shown to increase with decreasing F[2—¢€].
Provided that the critical nucleus size is small enough to
ignore the many-body effects due to the thermalized gas of
solitons and antisolitons with density (5), we can describe
the nucleation process as a local two-body mechanism. This
picture is tenable only for low temperatures and relatively
strong external biases. A two-body nucleation mechanism
can be treated as an extension of Kramers’ theory [7] to
multidimensional systems with neutral equilibrium (or zero)
modes [2]. In the present paper we investigate this mech-
anism in the classical limit. Some results reported below
have been anticipated in Ref. [6]. The quantum mechanical
contributions to the two-body nucleation mechanism at
temperatures higher than the thermal activation tempera-
ture have been addressed in Ref. [8]. The extension of our
approach to other soliton bearing theories 1s also possible

[91.

2. Procedure

It has been shown that in the presence of fluctuation-
dissipation terms o suigle soliton (antisolitun) undergoes

VWUS-9U21,91,0303-U333 § 3.5U+ .25,V
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brownian motion, whereas the bias term pulls ¢g and. ¢z in
.opposite directions, according to the driven Langevin equa-
tion [10]

p= —ypt2nF+En() ©)

where 7(¢) is a zero-mean valued, gaussian noise with cor-
relation function {(n(t)n(0)> = 2D6(t), D = y/BE,, and p
is the boosted momentum of Py P = Eouf)/1 —u*. From
now on, we simplify our notation by adopting dimensionlucs
units, i.e.

)
—X—rX,
Co

Wot—t Y]

and, consequently, y/w,—7, Flwi—F and w,c,/kT— p.
This amounts to setting w, = ¢, = 1 and, in particular,
E, =8

The two-body nucleation mechanism is well defined under
the supplementary condition that the SG chain is over-
damped, i.e. > 1. Such a limitation affords three major
simplifications: (i) oscillatory solutions of Eq. (1), like breath-
ers and phonon radiation, are damped out and, therefore,
do not play any significant role in the statistics of the prob-
Jem; (ii) the non-relativistic limit, p = E,u,.is a good ap-
proximation. Accordingly, the Langevin equation (6) reads

2nF
E,

= —yut + 1), ®

whence the mean, up = +2nF/yE,, and the variance of the
Pk speed, {u—up)*y = (BE,)™"; (iii) soliton-antisoliton
collisions are always destructive. In fact, the condition for
a soliton and an antisoliton to go through each other in the
presence of damping [11], F > 2y%2 cannot be achieved in
the overdamped regime (remember that F < 1). In the fol-
lowing, we carry out our analysis under the conditiony > 1,
even though such an assumption is not always tenable when
modelling real physical systems, This point will be discussed
further in the last Section.

On deriving the Langevin Eq. (6) we have assumed that
the ¢x k) shape is stable under perturbation. This is not true
when the soliton (antisoliton) is driven by an external con-
stant bias, which tilts the SG potential F'[¢], thus changing
the effective ~*.sma frequency [4]: 1—]/1 - F’ (in dimen-
sionless units,. In order to ignore such corrections we re-
stricted our calculations to the case of small biases F< 1.
Actually, in deriving our results for the pair nucleation rate
{Section 3), we shall neglect corrections at the first order in
F.

Let us go back, now, to the pair nucleation mechanism.
Thermal fluctuations may activate, with finite probability,
a nucleus ¢y (x,X) of length 2.X about the vacuum config-
uration, ¢ = 0. For X' > 1, ¢y (x,X) is well described by the
linear superposition of a soliton and an antisoliton centered
in F X, respectively,

dn(x,X) = P (x+X,0) + dg(x — X,0) = 41g™* (ich%) .
®

The centre of the nucleus has been set at the origin without
loss of generality. The components of a large nucleus ex-
perience two contrasting forces: an attractive force due to
the vicinity of the nucleating partner, the potential of inter-
action being a function of the distance 2X betwéen their
centres of mass

Vu(X) = —2E, e,

X>1, (109

and a repulsive force due to the constant bias F, which pulls
¢k and ¢ apart, with effective potential F2n FX, respec-
tively. The critical nucleus configuration, ¢ (x, R) is attained
at the distance between ¢x and’ ¢g, 2 R(F), where the two
competing forces compensate each other. ¢y(x,R) is thus
the saddle point configuration to overcome for the pair nu-
cleation to take place. The critical nucleus admits of only
one unstable mode with negative eigenvalue, Ay, which in
the overdamped limit can be safely associated with the rel-
ative coordinate X(¢) [3].

The nucleation rate I' (i.e. the number of pairs generated
per unit of time and length) can be related to the imaginary
part of the free energy of the critical nucleus, Im, by means
of Langer’s formula [2]

N
r= %L pImS. (11)

In the foregoing Section we compute I" explicitly applying
the Langevin equation approach developed to derive Eq.

(6).

3. Results
The rate in Eq. (11) may be re-written in a more suggestive form

[2):

[‘ = _I):g.,_l. .Z_Ne"ﬁAEN

T Zo (12)

where Zg and Z denote the partition function for the vacuum field
configuration and the critical nucleus, respectively. AEy(F) is the
energy of the saddle point configuration ¢y (x,R), which acts as the
potential barrier between the relevant stable configurations, the
vacuum, with zero energy, and the nucleated pair driven infinitely
apart, with energy 2E,)/1 —u} ~ 2E,.

The quantities AEy(F) and A¢'(F) can be calculated within the
Langevin equation approach. The interacting pair ¢y (x + X) and
¢R(x — X) at large distance obeys the equation of motion

2nF
E,

obtained from Eq. (8) by inserting explicitly the atiractive drift term
corresponding to the potential in Eq. (10). The barrier of the total
interaction potential Vgg)(X) = —2nFX — 2E exp(—2X) is lo-
cated at

1 nF
R(F) = — ;—ln (ﬁ—)
£ o

¥=—yX+

—4e 2V 4+ () (13

(4

with wurvature (FgggiR) = 4rE. Moreover, the Smoluchowshi
limit to Eq. (13) yields our estimate for the negative eigenvalue
associated with the unstable coordinate X(¢):

4nF
N 3
BE ==

(15)
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We reinark, here, that the linearization around the:top-of the-pd-  whence, being A°(k) = A% (k) = A(k),
‘tential barrier implicit in Eq. (11) [2] holds good only unhder the
further restriction that Dfy < [Mx(R)IYVE(R), i.e. | det(BYo/2m) |”2 ( B )"2
. det’(BYx/2 2ny(A
WPF > 1 (16) | de ‘(BYu/ n)l ny|Ag| (24)

‘being Vxr(X) a.soft potential [12].
Our-best estimate for AEN(F) has been obtained by calculatmg
fdx H[$n(x, R)] with ¢x(x,R) given in Eq. (9) and R(F) in Eq. (14),
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This is an improvement with respect to the estimate reported in
Ref. [6]. Ourlpredxctlons (15) and (17) agree very closely with the
results of numerical integration [4].

To accomphsh our calculation of I' we determine, finally, the
ratio Zy/Z, in Eq. (12). For this purpose, we have recourse to the
linear stability analysis [1], whence

AEN(F) = 2E, [1 - (1

1
hZR(F) +1 (’ +

Zy dct([i Yof2m) |!

Sl P "B, 18)
The lincar stability operators

Yo = ~0f = y0, + 0k — V4 [0] (19a)
and

Vi = =0 — y0, + 0f — Voo [Pn(x.R)] (19%)

have been obtained from the unperturbed SG equation by expand-
ing the field ¢(x.1) at the first order around the vacuum configu-
ration ¢(x,1) = 0 and the critical nucleus ¢y(x,R), respectively.
The Goldstone mode of the operator ¥y has béen subtracted from
det(BYy/21), as denoted by the prime sign, and its contribution
calculated explicitly [2,4]. For a full treatment of Eq. (18) the reader
is referred to more detailed reports [6,8].

In the overdamped regime we approximate the operators in Eq.
(19) as follows

Yo = ~y0 + 0% — Vo [0]

(20)
Yy = =30 + 0} — Vog[gn(x.R)].
The eigenvalue spectrum of Yy is [1]
P00k = k*+1, k=20. (V2))]

The ecigenvalue spectrum of Yy, instead, consists of a negative ei-
genvalue yA8 (F), with 2§(F) given in Eq. (15), a zero cigenvalue
corresponding to the Goldstone mode, yA{(F) = 0, a discrete ei-
genvalue 25 (F) and a continuum

AR =K +1, k=0. (22)
The discrete eigenvalue yA3'(F) represents an internal oscillating
mode of the critical nucleus and follows the removal of the degen-
eracy at the continuum threshold, 2% (0), due to the finiteness of
the nucleus size. Of course, 0 < 345 (F) < 1. For small values of F
we retain the F-dependence of 2§ (F), only, whereas y25 (F) is set
to one and, thus, incorporated in the continuum. This amounts to
approximating the continuous branch of the eigenvalue spectrum
of Yy with twice the eigenvalue spectrum for the simple soliton
(antisulitun) stability operator, which is analytivally solvable [1].

In particular, the difference of the continuum state density for I,
and Yyat F=0is

4K = eo®) = on(H) = — —

n k%41 @)

_ [; 12
- exp [7 -.E dkA(R) Inyik)] = 4 (——val )«'N) .

Substituting Eq. (24) into Eq. (18) and Egq. (18) into Eq. (12) leads
to our final result [6]

I'F)=— (i) Im [BAEy(F)]'? e~PaEND) (25)

where AJ'(F) and AEy(F) are known from Egs. (15) and (17), re-
spectively,

4, Discussion

We comment, now, on the applicability of our estimate
(25) for the nucleation rate.

i) Eq: (25) applies only for small, finite values of the ex-
ternal bias, i.e. ~! < F < 1, The upper bound, F < 1, allows
us to neglect effects O(F?) due to the relativistic boost and
the rescaling of the plasma frequency. The lower bound,
BF> 1, instead, has been introduced in Eq. (16) to justify
the linear approximation implicit in Langer’s formula (11).
This restriction amounts to requiring that the mechanical
energy needed to pull an isolated soliton (antisoliton)
through a distance of the order of its size is larger than the
thermal energy, B, stored in.the critical nucleus [6]. Under
such a condition pair nucleation is not described by the
linear response theory, as confirmed by the fact that I'(F)
is proportional to ]/g for F—0. A realistic analysis of the
nucleation process at thermal equilibrium for vanishingly
small values of the bias cannot ignore the presence of many-
body effects as pointed out in Refs. [5,6].

(i) Corrections to I'(F) are expected at the first order
in F. For instance, in Eq. (18) the discrete eigenvalue of
Yy, 723 (F), has been set to one. In fact, we can give an up-
per bound to yAy(F), on substituting the potential
Vag [dn(x,R)] in Eq. (20) with the square well potential

7(Xx) =1 for |x] > R(F) (26)
= Vs [$wOR)]  for |x| < R(F)
where Vg4 [¢n (O,R)] = 2[2/chR — 1]* — 1. For large values

of R(F), i.e. small values of F, V(X) admits of one discrete
eigenvalue, which can be approximated by 1—2xnF. Since
M(X) = Vyoldn(x,R)] for any value of x, it follows that

A (F) <1-2nF. @7
A preliminary estimate of the F-corrections to Eq. (24) can
be obtained by noting that expression (9) for ¢, (x,R) co-
incides, formally, with the constrained (maximum amplitu-
de) breather solution [1] of the unperturbed SG equatiun,

wir-se )T

(28)
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where (1 + v%)'?In(2/v). = R(F) or, equivalently,

nF

2
v
The eigenvalue spectrum.associated with the time-depend-
ent stability equation for the breather solution is known
analytically [1]. After rotating ¢z (x,v) back to the soliton-
antisoliton superposition ¢y (x,R) of Eq. (9) by setting v =
—iu, the relevant changes in our calculations boil down to
substituting the quantity 4 (k) defined.in Eq. (23) with

(29)

4 (1=uhy”
B F T

(30)
As a result the r.h.s. of the Eq. (24) must be multiplied times
the correction factor [1 + (1 — u?)~"2]%/4, which, in view of
Eq. (28), implies a correction to~f*(F) at the first order in F.
The procedure sketched here will be developed rigorously
in a future publication,

(iii) Eq. (25) can be improved to account for intermediate
to large values of the damping constant y. A detailed cal-
culation of the determinantal ratio in Eq. (18) is straight-
forward [8] and leads to the same result for I'(F) as in
Eq. (25), with the only condition of rescaling

214"
A+ U™+ 1

14512 — (31

Of course, such a rescaling does not provide the correct
answer in the limit of vanishingly small damping constant
(transition-state theory approximation [7]). The extension

‘o
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of Kramers’ theory to the underdamped limit of the problem
of pair nucleation in thermalized SG chains is still an open
problem.
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Soliton — Assisted Activation Processes
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This paper deals with the problem of energetic activation of one or few degrees of freedom of a spatially
extended system. The fusion of soliton-like excitations is an efficient nonlinear mechanism to generate
high-cnergy events at soft springs which are embedded in a one-dimensional chain of hard springs. In
equilibrium there exists an optimum temperature where thermal energy is mainly partitioned to the soft
springs due to the superposition of thermally generated solitons. Some of the jeatures obtained for the
one-dimensional system also apply to a solution of soft spheres in a hard-sphere solvent.

1. Introduction

Energetic activation proves to be an essential precondi-
tion for a multitude of processes to take place. Obvious
examples are chemical reactions or the cracking of materials.
In the following we will define activation processes as high
energy events appearing at one or a few degress of freedom
of a spatially distributed system. The energy gained by the

*) Current address: Forschungsanstalt fiir Forst- und Holzwirt-
schaft Eberswalde, Alfred-Moller-StraBle, O-1300 Eberswalde,
Federal Republic of Germany.

Ber. Bunsenges. Phys. Chem. 95 (1991 Nv. 3

&, § CH Verlaysyeselischuft mbH, W -6940 W einheun, 1991

activation coordinates has to be provided by the surround-
ing system. The first complete theoretical treatment of an
activation process is contained in the famous paper of Kra-
mers [1].

Let us start with an elementary consideration of classical
activation processes in one degree of freedom The energy
corresponding to the motion along the activation coordinate
ry is assumed to be

2
= + U(rO)’

0= 0 = Mg .
2m P

WUS-9621,91,0303-6356 $ 3.50 +.25,0
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As special models for the shipe of the potential-energy func-
- tion we will use the linear oscillator potential and the non-
linear Toda potential [2], the latter one modelling a-wide
class of empirical molecular potentials consisting of a steep
"x\cpqlsive and a long-range attractive part:

Uro) = ;ima)&ro, (1.1)

2

= mo
UB(ro)-= bgo (exp(—boro) 1+ bory). (1.2)

The parabolic approximation (1.1) can be obtained from
(1.2) for a vanishing stiflness parameter by, Now we are going
fo consider an-activation coordinate embedded in a canon-
ical heat bath, Within the classical approach we find from
(1.1) and{1.2) for the mean energies

{psf2m)y = *—RT (U r) =

m m mog
CUBtrld = wo [ (l»T(ZZ) l"'(A-Tb% )]

where

xo]-~

¥(x) = -5; Inr'(x)

denotes the so-called Digamma function. From the above
expressions we find

UMYy > CUBrg)) .

Hence there is no way .to get an average energy exceeding
k T at a single degree of freedom for Toda-like potentials.

In this paper we present a contribution towards a theory
of nonlinear energy localization mechanisms thereby re-
stricting ourselves to the investigation of simple classical
models. The following part of the paper is dedicated to a
brief description of a dynamical effect — the soliton fusion
— allowing energy localization at a defined site of a non-
linear molecular chain. This effect could be involved in the
catalytic processes occuring in complex reaction systems un-
der nonequilibrium conditions. In the subsequent section we
will show that the superposition of thermal solitons may
lead to an activation enhancement even in equilibrium. Go-
ing beyond the special one-dimensional system presented so
far, we will argue finaily that the phenomenon of thermal
energy localization could be of a more general relevance to
the theory of activation processes.

2. Soliton Fusion as a Mechanism of Energy Accumulation

Now we are going to consider the dynamics of a non-
uniform chain of masses at position y, which are connected
to their nearest neighbors by Toda springs with the noniin-
ear spring constant b,.

The Hamiltonian reads

H= Z{ +—[exp( bu(Vns1 = ya)) = 1]

+ a(.vn-H - yn) .

@.1)

Here the notation is related to that one used in (1.2) by
ab, = mw:. For an infinite uniform chain (b, =
b¥ ne(— o0, + o)) Toda found the soliton solution [2]

exp(—b (Vi1 — yu))— 1 = sinhx 22)
- sech? (xn - [ﬂsinhzt> ,
m
with energy
2a .
B = 5 (sinhzx coshx — ). (2.3)

The soliton corresponds to a local compression of the lattice
with spatial “width” x~'. The quantity

T =¢<\/—?—:—I:- sinh;c)“l

defines a characteristic excitation time of a spring during
soliton passage. The energy of a much energy containing
and, therefore extremely localized soliton satisfying the con-

(24)

dition
sinh?s
> 1 2.5
reads according to (2.3) and (2.5);
E'x -Eb(-'- sinh®x. (2.6)

Now we consider a system consisting of two semiinfinite
Toda chains of different spring parameters, b, = b¥ n<0
and b, = by ¥ 1= 0 with by, < b. Although this nonuniform
chain does not admit exact soliton solutions, the solution
2.2] can be conceived as a right running solution on the
hard part with b far to the left of the interface where it
behaves as in a uniform chain. In the vicinity of the interface
however it will be scattered and evolve into reflected and
transmitted waves including both solitons and radiation
[3,4]. In particular we observe sufficiently far to the right
on the soft part the formation of a transmitted soliton that
was evaluated in a previous paper [3].

eXp(—=bo(ns1 =) —1 = sinh220

- sech? (zon - ’i"b%“_ sinhzzpt + 6) ,

. by . .,
sinh%z, = -—b-o—smhz'/. .

@7
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Pl

Thelast expression relates the transmitted soliton to the
incident oné. & denotés a constant phase shift.that occurs
due.to the scattering process. In case of strong localization
of both incident and transmitted soliton we find from (2.7)
and (2.6) for the energy E§ of the latter

2
b

Ej ~ ——sinh®*x ~ E°.

v

Hence the energy of the incident soliton is almost completely
transferred to the transmitted one, i.e,, scattering losses are

less important for energetic solitons. From (2.2) and (2.7) we .

-find according to (2.4) for the characteristic times 7 and 7,

ofthe incident and the transmitted soliton, respectively, the

.simple relationship

7% b

T b (2.8)
The existence of different time scales of soliton motion can
be used to generate high energy events by soliton fusion
which was demonstrated numerically {3]. The energy of two
strongly localized solitons of equal magnitudes impinging
on the interface will be contained afterwards mainly in one
soliton transmitted to the soft chain provided the incident
solitons were separated from each other by a time less than
7o on the hard chain,

of oo
i
/
* A A~
Vi) /
AA , 7

Fig. 1

Superposition of two solitons in a single soft spring (1 = 0) embed-
ded in a hard Toda lattice (1= 1, ..., 29) with parameters m =2,
a=10"2 b = 10 b/by=10. The solitons {each of energy E=1)
are separated from cach other by a time 8.4 7 on the hard lattice
initially (7 is the characteristic time (2.4)). the potential energy of
springs is plotted vs. time ¢ and spring number n

Now we consider a single soft spring embedded in a sur-
rounding, otherwise uniform hard chain (2.1) with b, =
bV¥n=+0 and by < b) instead of the interface between two
extended chains of different stiffness. It turns out that this
only soft spring is able to trap and superpose narrow soli-
tons impinging from both directions within characteristic
excitation time 7o which is demonstrated in Fig. 1. We only
note that this kind of soliton fusion leads to considerable

concentrations of potential energy at the soft spring [3].
Interpreting a compression of this spring up to a certain
critical value as activation process we have got a novel
mechanism to accumulate the energy. of nonequilibrium ex-
citations at a selected degree of freedom to be activated. In
a previous work [5] a simple model of global enzyme struc-
ture was invesigated in order to demonstrate the mainte-
nance of the main features of the effect for a chain of in-
homogeneous molecular units interacting via Morse poten-
tials even in the presence of frictional forces and realistic
potential parameters. A soft Morse spring was used to model
the linkage between catalytically relevant molecular groups
of the enzyme.

3. Statistical Thermodynamics of the Nonuniform Toda
Chain

In the last section the fusion of solitons was introduced
as a special nonequilibrium effect which is suited to support
local activation processes. Now we will give a brief summary
of some recent findings [6] proving that an activation en-
hancement occurs even in thermal equilibrium due to the
fusion of thermally generated solitons,

We consider a nonuniform Toda chain (2.1) of N particles
which is fixed at the left hand side (3, = 0) and introduce a
pressure P acting on the right end particle (yy). Among the
N springs may be N, soft springs with spring constant by,
After changing to spring coordinates, r, = y, — y,—i, the
exact classical partition function can be calculated as for the
uniform Toda chain [2]. Using the notations f = 1/kT,
y= P/kT, we obtain

N +0 -
zpp=11 § { dp.ar,

exp{-fp.i—ﬁ—[cxp( —=bry)—1]— (ﬁa+7)r,.}

- () Lo (B O (B
R AR

The partition function splits into separate factors corre-
sponding to hard and soft springs. The internal energy of
the chain reads

3.1

E= — ﬁlnzm 7)) = A/; + (N~ No) i) + Nolt)
with
a a+P P
w = [n(s5)- ()] + 5
and (3.2)

R ER L
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expressing the average potential energies of a hard and a
soft spring, respectively.

Now we are going to elucidate soliton-induced effects in
the thermal behaviour of nonuniform Toda chain. Because
solitons are destroyed at open ends, we are led to fix the
total-length of the chain, which can be calculated from the
partition functions (3.1). Assuming further a vanishing num-
ber of soft springs embedded in a chain of hard springs, i.e.
a-strongly “diluted solution” = No/N =0, whereas N— oo
and Ny — 00, one obtains for the pressure [6]

r=prfefg]-o

By the help of (3.2) and-(3.3) we can now calculate the av-
erage potential energies of the springs. Especially in the high-
temperature limit the ratio of the average potential energies
of a soft and a hard spring yields

@ b
Uy peo by

(3.3)

(3.4)

The ratio of spring encrgies as well as their absolute values
in units of thermal energy are presented in Fig. 2 in de-
pendence on temperature. In the high-temperature limit
thermal energy is partitioned mainly to the Kinetic degrees
of freedom. Whereas the ratio of potential encrgics of soft
and hard springs tends up to the maximum value defined
by (3.4), the ratio of potential and kinetic encrgy tends to
zero. Hence only a vanishing part of thermal energy is lo-
cated at soft springs. At low temperatures equipartition the-

10 4 —=
4 M0 ,/’
: \ ,’ \?’to.’
(U.) - 14
(uy 77 ,
) 7
1 L 4 A'" ¥ v ¥ v v L4 L v
24
B uo b
1-
BCu) o
$ 2 0 -2 -4 -6
logP
Fig. 2

Average spring energies of soft and hard springs m a nonumnform
Toda lattice with fixed average length (of. Fig. 1) in dependence un
B=1/kT.

a) The mutual ration of spring energies for two different concen-
trations 7 = No/N of soft springs. Maximum deviation from equi-
partition of potential energies is obtained in the high-tempera-
ture limit for a vanishing number of soft springs.

b) Spring energies in units of thermal energy for a vanishing num-
ber of soft springs (y = 0). In an intermediate temperature range
beyond both the harmonic and the hard-core limit a localization
of thermal energy takes place at the soft springs

orem is valid and thermal energy is shared equally among
all microscopic degrees of freedom. Between these limits
there is an optimum temperature where the potential energy
of soft springs amounts to a multiple of k772 and locali-
zation of thermal energy takes place.

The peculiarities in thermal behaviour of a nonuniform
Toda chain can be attributed to the properties of solitons
which are the nonlinear modes of motion. Bolterauer and
Opper [7] reconstructed the free energy for a uniform Toda
chain from a gas of noninteracting solitons. This approach
yields reasonable results.in case of a fixed total length as
temperature T tends to infinity. On these conditions N
strongly localized solitons — each of average energy k7/2
— are excited on a lattice of N springs. Hence each soliton
possesses an average potential energy <u,) equal to the
spring energy <u). The average distance in time between
adjacent solitons can be obtained from (2.2),

m b

T=n1x ab m (3.5)

Using (2.5) we can approximate the average potential energy
of a hard spring by

+ T2
ad & u) ~ L | dt = sinh?» sechz( /—@- sinhut)
-2 b m

_ 2a_ sinh®

A ——

b %

On the other hand the average energy of one soliton equals
172 if f—0. With (2.6) we find

2a . ., 1
b sinh®x ~ Tk

hence
b -
Pl = <2arcsinh Ta ;) - 0.

Due to the perfect repulsion between particles the extremely
narrow and fast solitons dominating the dynamics at high
temperatures do not contribute to the average potential en-
ergy of springs but to the kinetic energy of particles.

Now we are going to consider the average potential en-
ergy {upy of the soft spring. Solitons are transmitted to it
with an average period 1/T given by (3.5). In the high-tem-
perature limit every excitation of the soft spring can be de-
scribed by a strongly localized transmitted soliton (2.7) and
we get

+172
) ~ —1— [ dt == sinh?%, sechz( ,a_bo sinh ¢, t)
T 12 by m

asinh?z b

2 b z-i)o—(zo.
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This:is-the result.(3.4) derived-above: So the twofold devi-
ation from equipartition- .of energy can be explained by non-
interacting solitons in the limit of infinite temperatures

‘In the intermediate temperatire range that is character-
ized-by a localization of thermal energy at- the soft spring
non-soliton modes; ‘partrcrpate in-the dynamics too. But ob-
viously solitons are.responsible for:the transfer of*thermal
energy to-the soft springs. This can be understood intui-
tively. In the high-temperature limit discussed above the
mean. time T between incident: solitons was much. greater
than the time 7, describing the duration of incidence, i.e.
T> 1o > t. With decreasing temperature ‘thermal solitons
become less localized and both times will be-comparably.
Thus a substantial superposition of incident solitons as pre-
sented:in Fig: 1 takes place in the soft spring giving rise to
the elevation of average potential energy for intermediate
temperatures. At low terperatures however strong inter-
action is no more confined to the soft spring and individual
solitons are destroyed.

At the cnd of this section we shall discuss the possible
relevance of thermal energy localization to reaction theory
within the frame of simple transition state theory. We con-
sider an ensemble of particles moving in an initial well with
an adjacent barrier of height AU forming the boundary of
the well, TST assumes all states in the well and around the
barrier being populated according to equilibrium distribu-
tion. If U(r) models the shape of the potential inside the
well and AU > 1 we obtain for.the rate of transitions over
the barrier [1]

*® g
§ dpo—-exp(—BH(po.1))
0 m

o0 +oo - ?

d dn § dpoexp(—BH(po.mo)

kst = (3.6)

re denotes the top of the barrier and U(r§) = AU. Approx-
rmatmg U(ro) by a harmonic potentiai (1.1) we get the well
known formula [1]

kst = ;’—;exp(— BAU). %)

Now we consider a reaction oscillator coupled to a nonlin-
ear molecular chain. The shape of the well may be described
by a Toda potential (1.2). According to the assumption of
TST the reaction oscillator is in thermal equilibrium with
its surroundings, which is here represented as canonical en-
semble by the effective Hamiltonian

5
H(po, 1) = B + Ulro) + Pro.

Physically this result can be interpreted in the following way.
The soft reaction oscillator behaves as subsystem in an iso-
baric-isothermal ensemble [10]. In other words the action
of the hard springs may be reduced to the pressure they
produce in the system.

The transition rate for the coupled nonlinear reaction os-
cillator follows from (3.6):

(L (55 )

(=)
-exp[—ﬂ(AU+P mbw"):l.

Here the condition B(AU -+ Prf) » 1 has to be fulfilled in
order to applicate (3.6). The reaction oscillator may be en-
closed by a sufficiently large Toda ring with parameters a,
b and m. Then formula (3.3) defines the force P in (3.8). At
low temperatures the rate (3.8) reduces to the result (3.7).
The top of the barrier may be located at a negative reaction
coordinate, r¥ = — |rg, correspording-to a critical mutual
distance between reactive molecular groups. Then with in-
creasing temperature a considerable rate enhancement is
attained (Fig. 3). The arbitrarily chosen reaction coordinates
in Fig. 3, e.g., could be related to catalytically relevant slow-
frequency motions observed in enzyme macromolecules [5].
Recently Muto et al. [8] calculated a significant number of
solitons generated at physiological temperature in a Toda
lattice model of DNA with similar spring parameters as used
in Fig. 3, If thermal solitons are present in biomolecular
strings they are likely to support energetic activation of func-
tional processes.

k¥t =
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Fig. 3

Enhancement of a hypothetical slow-frequency transition process
(mud = ayby) by coupling to a hydrogen-bonded molecular chain
with bond parameters fitted to a Toda potcntral a=56-10""n,
b=9-10"m"'(mw? = ab) according to transition state theory. The
relative barrier height §A U = 20 was chosen to be constant all over
the temperature range. The dot on the abscissa marks physiological
temperature (310 K) and the arrows indicate the maxima of relative
potential energy f<u>

4, Activation Processes in Solutions of Soft Spheres in a
Hard-Sphere Solvent

Let us first consider o linear chain of hard balls in contact.
As everybudy knows from popular expetiments at schoolor
the basic course in physics, a kicking of the first ball leads
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to.an excitation runuing through-the chain thereby leaving
the intermediate balls essentially at rest. When the excitation
arrives-at the opposite end of the chain the outer ball is
elongated. This experiment is a simple demonstration of a
soliton-like excitation. If we put a soft ball into the chain
the excitation will be kept there for some time performing
an elastic deformation. It should be possible to demonstrate
also fusion effects of the type described briefly in the second
paragraph and-in more detail in a previous paper [3] with
such a simple device (there are however no experiments
known to the authors). The soft ball serves as a kind of
buffer accumulating collisional energy. The result of the ac-
tivation could be, e.g, a destruction.of the soft ball after a
critical compression. The theory developed in the previous
section applies qualitatively for the prediction of the destruc-
tion rate.

Conclusively we want to illustraié that the feature of a
soft volume part-to get activated by accumulation of colli-
sional energy is not restricted to quasi-one-dimensional sys-
tems, even if the interpretation of such an effect by solitons
or solitary-like excitations will not be applicable to three-
dimensional systems generally. Let us considera solution of
soft spheres in a hard-sphere solvent as simple model for a
binary mixture of “soft” and “rigid” molecules. We do not
start with a microscopic description as for the Toda chain
but simply assume the validity of the compression law (1.2),
where now the quantity r, denotes the deviation of the vol-
ume vy of the spheres with radius R, from its value v{¥ at
zero pressure and zero temperature:

=to-il), =R, @1)
The parameter b, describes the stiffness of the soft-sphere
volume now. The soft spheres may be embedded in a solvent
of (absolutely) hard spheres. Then in the limit of infinite
dilution the pressure P in the solution equals the hard-
sphere pressure. which reads in the Carnahan-Starling ap-

proximation [9]:

=t % - CO B @2
Here
f= 4T“QR’

denotes the packing factor of the hard spheres with radius
R and g is the density. Considering an ensemble with con-
stant densi. y the pressure P proves to be a linear increasing
function of temperature f~'. Following now the analogy
explained in the previous section the soft spheres may be
considered as subsystems embedded into an isobaric-iso-
thermal ensemble. Then the average potential energy of an
embedded soft sphere can be calculated according to

+ 00
[ dro Utrg) expL—B(Ulro) + Py)]
gy = =2
_Iw droexp[—B(U(ro) + Puy)]
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Inserting (1.2), (4.1) and (4.2) we obtain
mog [ ( pmowd
oo 2o )
bo bo (4.3)

Clo)
bof

(g S0

Now we are going to consider the part of thermal energy
partitioned to the soft spheres, f{uy», in dependence on
temperature. Especially for high temperatures we find from
43)

By ~ <2
p=0 Oo

Depending on this value we find qualitatively different be-
haviour, as can be seen from Fig. 4. For C(g)/by > 0.5 the
relative potential energy is increasing monotonously with
temperature, in the idealized case of a Hooke’s compression
law ‘even unbounded (see curve 1 in Fig. 4, a vanishing
stiffness by = 0 corresponds to the potential-energy function
(1.1)). For C(g)/by < 0.5 however the curves display a max-
imum corresponding to a localization of thermal energy at
a finite temperature. A comparison of the curves 3 and 4
shows, that these maxima are raised and shifted towards
zero temperature for increating stiffness of the soft spheres.
This behaviour is due to the vomewhat artificial assumption
of an infinite stiff hard-sphere potential even for vanishing
temperatures. A more comprehensive discussion on solu-
tions of soft spheres in stiff solvents will be given elsewhere,
However already this present short analysis indicates that
some of the main results abtained for the Toda chain persist
in three-dimensional systems.

1
1 2
Peun
os
3
"
0
3 -4 2 0 2 4 6
log ﬁ"’

Fig. 4

Average potential energy (in units of thermal energy) of a soft Toda
sphere which is surrounded by a constant-density ensemble of hard
spheres (C(o) = 1} according to formula (4.3) vs. temperature ',
The eigenfrequency of the soft sphere is given by mw = 1 and
the stiffness parameter by varies for the different curves. 1 — by =0,
2 ~by=1,3 — bp=10,4 — by=1000
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5. Conclusions

The dynamical effect of soliton fusion provides an efficient
mechanisth for localization of as well thermal as nonthermal
energy at activation sites that are part of a nonlinear mo-
lecular chdin. We proved the existence of an optimum tem-
peratire, where thermal energy is preferably partitioned to
few soft:springs embedded into a nonuniform Toda chain
consisting mainly of hard springs. Here we restricted our-
selves to the invéstigation of the energetic activation of the
soft springs. For application to transition processes, e.g.
chemical reaction, the simple TST developed in the third
paragraph has to'be replaced by a theory starting from a
nonequilibrium population of particles localized near the
bottom of the well, This implies corrections of the TST re-
action rate in dependence on the shape of the barrier.

In the last section we intended to demonstrate that the
effect of thermal energy localization persists for solutions of
soft spheres in hard-sphere solvents. The presented theory
is based on pure thermodynamical grounds since a statistical
description of the underlying dynamics of the three-dimen-
sionalimany-body system by nonlinear elementary excita-
tions scems to be impossible. Obviously the soft spheres
serve as”a kind of buffer accumulating collisional energy
from the surroundings. A further investigation of thermal

energy localization for three-dimensional systems could be
of a principal interest to reaction theory.
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Hopping of Quantum Particles on Crystals with Energy Disorder:
Influence on Spin Resonance
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Properties

For spin 1/2 quantum particles hopping on energetically disordered lattices paramagnetic lineshapes and
free induction decay (FID) signals are calculated as a function of the hopping rate y between nearest
neighbours. The energy disorder is modeled by local magnetic ficlds chosen from a Gaussian or dichotomic
distribution. For motion on a lincar chain it is derived — using a continued fraction method — that the
FID signal shows a cross over from an exp(—¢>?) law to an asymptotic exp(—1) behaviour. Preliminary
investigations for 2- and 3-dimensional lattices have been performed using algebraic multigrid methods,

1. Introduction

In recent years organic metals [1] have been the subject
of many experimental and theoretical investigations. One of
the aims of these investigations was to understand the trans-
port properties of charge carriers. In these materials, e.g. the
fluoranthene radical cation salt (FA);PF,, the organic ions
(donors) are frequently arranged in stacks with the inorganic
counterions (acceptors) sitting between the stacks [2]. The
charge transport 15 assumed to oceut in a quasi-one-dimen-
sional manner along the organic stack.

One way of getting more detailed information on the
transport of charge carners is frum the inmvestigation of spin
resonance. On account of the interaction between the spins
of the charge carner and the protons lovalized in the fluor-

Ber. Bunsenges. Phys. Chem. 95 (1991, No. 3

O VCH Verlaysgesellschuft mbH, 1-6940 Wenhen, 1991

anthene units, electron spin resonance (ESR) properties, e.g.
the electron spin echo (ESE) decay, are influenced by the
motion of the charge carrier. ESE decay measurements for
(FA)Y [(SbFy),_, (PF.). ], x = 0.5 [3] show that the ESE
signal decays according to exp(~t*? for small times and
purely exponentially for large times. In [3] this was inter-
preted as a transition from 1- to 3-dimensional motion of
the particle. On the other hand the ESE in (FA),PF, [4]
decays in a purely exponential manner. Thus, from experi-
mental results the question arises whether and why the ESE
decay occurs according to exp(- ;1)) or as eap(—;t).

A similar question comes up also frum theoretical inves-
tigations of the free induction deway (FID) which for ho-
mugeneous systems wontains the same infurmation as the

V05-9021,91,0363-0362 $ 3.50 +.25,0
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ESE decay for inhomogeneous ones. Analytical investiga-
tions in.[5] arrived at the conclusion that the FID decay
occurs as exp(—(y¢)*®), Monte-Carlo simulations carried
out in [6] led to the conclusion that at least asymptotically
the decay follows an exponential law. One of the purposes
of this paper is to show that there is a crossover between
the two decay laws.

-+

2. Theory of ESR Line Shape and Fiee Induction Decay
2.1, ESR Linc Shape and Free Induction Decay

From linear response theory the ESR line shape is given
by the imaginary part of the magnetic susceptibility

2 [
7 (@) = —(%> (1 —e=P9)Re § dee=i' (S~ §* (1))
0 — (1)
F@).

N is the number of unit cells, ¢ and m charge and mass of
the charge carrier, § = (k7)™ and F(t) = {§~ S*(t)) is
the two time correlation function which describes the FID:

o0

Fy=<S=S* @) = | dte"“ F(o). 2)

-0
The comparison with (1) shows that — apart from constant
factors — the ESR line shape is given by
1 ¢ ; 17 .
Fo)=I(@)== | dte= F(t) = Re= | dre=" F(1).
2n -0 To
3

2.2, Model Hamiltonian
The Hamiltonian of our model is given by

H=  Xhes06ra: + o8 + H @
nn’
A e Vo —" R A el
incoherent electron Zeeman interaction
transport

The first part describes the hopping motion of the charge
carrier. The h,, (¢) are the fluctuations of the transfer matrix
element (in the sense of the Haken-Strobl model [7 - 9]) and
mathematically described by a d-correlated Gaussian proc-
ess with correlation functions

Cnng 1 (O By 1)) = (g 1(€) B 100D ()
=2y4(t-1").

The next term is the Zeemann energy of the charge carrier
spin in an external magnetic field. The last terma finally de-
scribes the hyperfine structure interaction between the elec-
tron and proton spins. Explicitely, this term is given by

H =AY SLafa,
" (6)
=AY (S E+SY I+ S~ I} ata,,

which means that in our model calculation we have taken
into account only the contact interaction (A is the hyperfine
coupling constant). To complete the model description, we
mention that lateron in the numerical evaluation we shall
replace the quantum mechanical hyperfine structure inter-
action Hamiltonian by a simpler Hamiltonian with frozen
proton spins, whose orientation along the z-direction is ran-
dom. For this zimplified model the Hamiltonian becomes

H =Y w,a a8, Y]

2.3, Analytical Evaluation

In the framework of the Mori-formalism [10] the equa-
tion of motion for the FID decay function is given by

F() = iQF() — ;j de’ M(t—t)F(t) ®)
Q = (S LS*)+(S*,8+) )
ii dtQL(z)

M) = (LS Tes QL' S*)(S*8%)~". (10)
In this equation € is the frequency, M(t) the memory func-
tion, and- L theLiouville operator. 1y is the decay constant
for the memory function, and 7. the one for the free induction
signal.

If the memory function is evaluated in Born-approxima-
tion, we arrive at

MO = 6 A g agTexp (i far Ly as o)
0

2
= el ATP(t).

an

The inspection of this result shows that P(f) is the condi-
tional probability of finding the particle at the origin at time
t, if it was there at the initial time: P(t) = P(r = 0, ;r =
0, t = 0). The analytical results [5,11,12] are summarized
in the following.

If the decay time of the memory function is much larger
than the decay time of the correlation function, i.e.
™ > T, or yA<1, (12)
which describes the case of slow particle motion, the ESR
line is inhomogeneously broadened with the inhomogeneous
width determined by the hyperfine structure interaction. The
homogeneous width of une compunent 1s determined by the
life me of the charge carrier at a particular site, i.e. by the
hopping rate 7.

In the opposite limit when the decay time of the memory
function is much smaller than the decay time of the corre-
lation function, i.e.

ie 7/4>» 1,

(13)

Ty < Tes
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. describing the case of fast particle motion, the FID decay

function-can be taken -out of ‘the -integral in [8]. In the
interaction representation. we finally. arrive at

Fo = - {arite) Fo
0 (14)
— F(t) = eip (- £ de(e—1) M(t’)) ,

where the expression on the righthand side is the solution

.of the differential equation on the left, For sufficiently long

times and taking into account that in the case considered
the. memory function decays fast, the second term in the
exponent can be neglected and asymptotically-we arrive at
an exponential decay of the correlation function:

F(t) = exp (;t 10 dt’}VI(t’)) . (15)

After this rather general consideration, let us investigate the
influence of the dimensionality of the motion on the FID
decay. In the case of the purely incoherent motion the prob-
ability of finding the particle at lattice site » is given.by the
modified ‘Bessel function of order n [13], if the particle was
at the origin at the initial time. Therefore P(t) from above
is given by the modified Bessel function of order 0. We
therefore have

2 i
M) = -A3—e“" Io(dyt) === 8nyt)~'2 (algebraicdecay)
(16)

where the expression in the righthand side describes the
behaviour in the continuum limit, If this is inserted into [14],
we get for the FID decay

F(t) = exp(—(Awgt)”) dimension d: 1, (17

In the case of independent random motion in the various
space directions, the probability is given by the product of
Bessel functions with a corresponding behaviour in the con-
tinuum limit. The calculation of the FID then gives

F(t) = exp(—(Aw,t) dimensiond: 2and 3. (18)
Eq. (17) is just the result obtained in [5]. The evaluation of

the ESR linewidth in dependence of the dimension results
in

Awy = -%— = ((w?)*y)® dimensiond: 1 19
<

Ay = ’i = {2y dimensiond: 2and 3. (20)
te

3. Numerical Evaluation of Spin Resonance Properties
‘Writing out explicitly [2] we get

F@) = ; S-Z” {ns|S— <7‘exp {i(];dtL(t)} S+>ngolnsz. |
21

The states {ns) describe a quantum particle-at site n with
spin s, go is the density operator at the initial time and the
index RW means averaging over the random walk. Assum-
ing as initial condition equal. occupation probabilities at
each lattice site, (21) may be written as follows:

Ft)= iNZ (1n|<T”exp{-—-i§dtL(t)}S">RwlnT} 22

+L 0. @)
The functions ¢, (f) are defined by the last equality, and are

to be determined from the following set of differential equa-
tions:

Gy (t) = (iwn - 47) Cn 2)’(Cn+| + i) (24)
In matrix form this equation reads
¢ = Ae. (25)

In this equation 4 is a matrix with random diagonal ele-
ments w,. After a Laplace transformation this set of differ-
ential equations is transformed into a set of algebraic ones.
For motion of the particle in one dimension, this equation
is tridiagonal and can easily be solved with the help of con-
tinued fractions, For 2- and 3-dimensional motion we have
used multigrid methods [14].

Fig. 1 shows line shapes calculated for motion of the particle
on a linear chain with 107 sites for dichotomic disorder of
the local magnetic fields and various hopping rates, nor-
malized to the strength of the local magnetic fields (strengths
41, i.e. ¢ = 1), For very small hopping rates as compared
to the strength of the local magnetic field, i.e. y=0.1, we
have two ESR lines with positions determined by the two
values of the local magnetic fields. The width of the lines is
given by the life time at the site and thus determined by the
hopping rate y. When y becomes comparable to the distance
in the line positions (y = 0.5), the two lines merge into a
single line. With increasing hopping rate (y = 10, 100) the
line narrows; the narrowing, however, is not x y ' but given
by (19). Furthermore, the comparison with the dashed Lor-
entzian line in the figure for y = 100 shows that in this
range of the hopping rates the line shape is not Lorentzian.
Increasing y further, the ESR line becomes structured. The
origin of these structures are clusters in the dichotomic dis-
tribution of the spins [12]. Increasing the hopping rate fur-
ther to y = 10, these structures are finally averaged out
and we arrive at a Lorentzian line, whose width is oc =%,
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Line shape as a function of the hopping rate y for a 1-dimensional motion and dichotomic disorder (¢ = 1, N =107)

Fig. 2 shows the FID signal for a chain with N = 10’
sites (to avoid finite size effects), a hopping rate y = 1000,
and a Gaussian random distribution of the local magnetic
fields. The curves are obtained by Fourier transforming line
shapes obtained as described in connection with Fig. 1. In
the left figure in the upper row, F(t) as a function of ¢ is
represented and shows the decay of the FID signal. The

figure on the right hand side shows (- InF(£)),1*? a5 a func-

tion of ¢. In the lower row we have represented F{t) in a
logarithmic scale as a function of £** 1n the left figure, and
as a function of ¢ on the right hand side. The comparison
with the dashed straight line shows that for short tumes the
FID signal decays according to an exp(- (,¢)' ) law and for
large times as exp(- ;t). Therefore our calculations show
that we have a crossover between the two devay laws, and

that the analytical result of [5] hulds for short times whereas
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Free induction decay F(t) for Gaussian distributed local fields and {-dimensional motion of the particle on a chain with 10” sites, Hopping
rate y = 1000 in units of the standard deviation of the local magnetic ficlds
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Free induction decay time as a function of the hopping rate 7 in 1 dimension

~

the simulation result of [6] is valid asymptotically. Fut- From the analysis of the numerical line shapes we have
thermore our results also shows that the transition between  derived the free induction decay time (maximum of the nor-
the two decay laws can also ocyur for purely 1-dimensional  malized line shape curve) as a function of the hopping rate
hopping and does not necessari,y allow the conclusion that  for a chain with N = 10° sites. The plot of z.5'* as a

i

there is a transition fiom 1- to 3-dimensional motion. function of , in Fig. 3 on the lefthand side shows that for
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7./y as a function of the hopping rate y for a 300 x 300 lattice (left figure). The two curves correspond to two realizations of a Gaussian
process. The figure on the righthand side shows the same quantity for a 28 x 28 x 28 lattice. The full curve represents a Gaussian
distribution, short dashes a dichotomic process, long dashes an analytical calculation in the framework of the Mori-formalism

small values of y the correlation time-+is proportional to

7' and thus the linewidth is proportional to y='3, On the

other hand from the figure on the righthand side we see that
for large values of y the correlation time is proportional to
y and the linewidth therefore proportional to y~'.

Fig. 4 shows preliminary numerical results for the nor-

* malized correlation time 7./y for 2- and 3-dimensional lat-

tices obtained [11] with the help of muitigrid methods [14].
From the figure for the 2-dimensional 300 x 300 lattice we
see that for y > 100 (the hopping rates are normalized to
the standard deviation of the local field) 7. oc 7, i.e. the line
is motionally narrowed and Lorentzian. The two curves in
the figure on the lefthand side correspond to two realizations
of a Gaussian stochastic process. The figure on the right
shows also .y, however now for a 28 x 28 x 28 lattice. In
this case t.ocy as soon as y > 10. The full and long-dashed

single lines (inhomogencous broadening)

. 1 coalescent broad lines

exp (—t%/2) behaviour
narrowing Aw o< 43
exp (—t) behaviour for ¢ — oo

cluster effects
narrowing Aw o< 7!

exp (—t) behaviour

finite size effects

7/A

Fig. 5
Summary of spin dynamius for 4 partile hopping on a lincar chain

curves correspond to a Gaussian and a dichotomic process,
respectively. The short dashed curves are analytical results
obtained from the Mori-formalism,

4, Discussion

Fig. 5 gives a summary of the paper. For small values of
y/A we have inhomogeneously broadened ESR lines, whose
width is determined by the distribution of local magnetic
fields modeling the hyperfine structure interaction, The
width of a single component in the inhomogeneous distri-
bution is determined by the time interval the particle spends
at a specific lattice site, i.e. by the hopping rate, For /4 ~
1 we have a coalescent broad line. In the following range of
the hopping rate the FID is described by an exp(—t*?) law,
and asymptotically by an exponential function. The width
of the ESR line is proportional to y~'2, In the range y/4 ~
N, where N is the number of sites in the chain, we observe
cluster effects. For still larger values of the normalized hop-
ping rate, for which the particle probes the whole chain, the
FID is described by an exponential function. The line shape
is now Lorentzian because of finite size effects. Finally, it
should be mentioned that the transition from 1- to 2- and
3-dimensional motion also results in an exponentially de-
caying FID.
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The effective medium theory of diffusion in topologically disordered systems is reviewed with emphasis

on the description of disorder induced anomalous diffusion, The cflective medium approximation (EMA),

for which a new derivation is given, is shown to provide a reliable and simple scheme to discuss the

diffusive motion of particles in disordered systems such as clectrons in the localized energy region of

disordered scmiconductors or jons in amorphous solids. Explicit calculations for some pertinent models

are presented and the consequences of anomalous diffusion to a.c. conductivity, transient photoconduc-
tivity, ncutron scattering and NMR data are discussed.

1. Introduction

In many disordered systems as metallic and nonmetallic
glasses or disordered polymer materials the diffusive motion
of ions or electrons cannot be described by Fick’s law which
states that a current instantaneously arises if a concentration
gradient is present, This is because the disorder leads to
retardation effects which can extend into the millisecond
time scale. The most striking and simple evidence for such
an anomalous diffusive motion comes from conductivity
measurements. In many disordered materials the a.c. con-
ductivity is strongly frequency dependent and typically
obeys an o (w) « w' ~* law over many decades of frequency
with 0 < o < 1[1,2]. This corresponds to a time depend-
ence of the mean square distance walked by a particle {r*(¢))
« t% i.e. it increases sublinearly with time instead of linearly.

Further evidence for anomalous diffusion of ions in dis-
ordered solids comes from dielectric loss [1—3], NMR
[2,4,5], neutron scattering {5], and time dependent elec-
tronic density of states data [6]. Further evidence for anom-
alous diffusion of electrons 15 obtained from transient pho-
toconductivity data (“dispersive transport”™) [7]. This anom-
alous behaviour arises from strong fluctuations of the
microscopic kinetic coeflicient which govern the transport
process.

Anomalous diffusion can alsv arise as ¢ concequence of
fractal topology [8,9], van be Laused by critival fluctuations
near a glass transition [10], or can be a consequence of

Ber. Bunsenges. Phys. Chem. 95 (1991, Mv. 3
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Coulomb interactions [11]. These possibilities will not be
addressed in the present paper.

For describing ionic or electronic hopping transport or
jump diffusion in disordered solids [12] one can start from
a set of master Eqs. [13,14], one can usc a random walk
description [6,15] or an random network model [16,17].
All three approaches are equivalent: the microscopic master
and random walk equations are equivalent to Kirchofl’s
equations for the network. The existing approaches for per-
forming the configuration average and solving for the dy-
namic diffusivity and conductivity can be divided into three
groups: (a) averaging over the kinetic coefficients, which cor-
responds to an equivalent circuit of parallel impedances
[18,19,20 - 22]; (b) averaging over the unrenormalized sin-
gle site propagator (single site approximation, SSA) corre-
sponding to a serial equivalent circuit {15,16] and (c) effec-
tive medium approaches (EMA) [14,23-30], It is well
known that both (a) and (b) can lead to grossly wrong re-
sults, especially in the dc limit. In two and three (or higher)
dimensional systems with strongly fluctuating kinetic coef-
ficients one encounters an intrinsic percolation problem
[17,33,34]. This behaviour is accounted for by the EMA
description although only in « mean field way but not by
approximations (a) and (b).

In the present contribution an effective medium theory of
hopping transport in disurdered systems 1> reviewed with
emphasis on the EMA description of anomalous diffusion.

QUUS-9021,91,U3 )3-0368 § 3.5U +.25,0
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The.present EMA -version is suitable for noncrystalline ma-
terials:i.e. systems without -translational symmetry. In the
next section the hopping model-is formulated-and-a new
derivation of the EMA is presented. The.third section com-
prises results of model calculations for several systems of
interest .and the fourth section gives-a description of exper-
imental manifestations.of anomalous diffusion,

i‘Effective Medium Approximation
2.1 Rate Equation

Let us consider the -motion of noninteracting particles
which can perform instantaneous jumps between sites dis-
tributed randomly in space. Such a process can be described
by thie-following set of Markovian master equations

d
= "'2] %nx+§}: Winy 1)

m;(t) is the occupation probability of site i and W, are the
transition rates between site i and j (kinetic coefficients). In
the present contribution only the case of symmetric rates
Wy = W is considered”, Specifically the quantities W, are
assumed to depend on the intersite separation 1y only: W, =
W (ry, Ey). ry and E; are random varjables with distribution
g(ry) (radial pair distribution of sites) and g(E,).

The nontrivial problem consists in obtaining a reliable
scheme for evaluating the configurational average in order
to obtain quantitics like the single particle propagator or
the frequency dependent diffusivity. The EMA is such a
scheme. Since the derivation of the EMA versions which
include disorder in the hopping distances [23,24,26] is
somewhat involved a new derivation is presented in the re-
maining part of this section which follows the spirit of the
standard CPA/EMA technique [28—31,35].

2.2 Averaged Propagator and Frequency Dependent
Diffusivity
The linear set of Eq. (1) can be solved formally by Laplace
o
§dif@exp{-pt}p =

iw+ ¢, £ 0). The averaged propagator which is the central
quantity in the subsequent analysis is given by

transformation (convention f(p) =

Gk,p) = <Z exp{ikry} [pI- K17 )

Here ¢ denotes a configurational average, and K is a matrix
with diagonal elements Kj; = Z W, and off diagonal ele-

ments K;; = Wj. ['is the unit matrlx. The averaged propa-
gator G(k,p) is the Fourier and Laplace transform of the

" In systems with encrgetical disorder the detailed balance leads to
W, # W, and one must usc a more general treatment [26]. How-
ever, as shown in Ref. 26 in cases where one is only interested in
diffusion and not 1n thermoelectric effects or energy relaxation 1t
1s sufficient to use symmetric rates with effective energy barners
leading from i to j.

self density-density correlation function [36] which de-
scribes the single particle'motion. The corresponding spec-
trum is the incoherent neutron scattering law

Sk, w) = —;-Re{G(k, )} 3)

G(r,t) is the conditional probability to find the particle at
r and ¢ if it started initially at the origin. Particle number
conservation leads to the Green Kubo identity [36]

m Gk,p) = [p+ D)K. @

D(p) is the dynamic diffusivity which is the Laplace trans-
form of the velocity autocorrelation function ¢(t). D(p=0)
= D is the usual diffusivity. As stated in the beginning in
disordered systems D(p) is strongly frequency dependent up
to the experimental time range so that one has to generalize
the diffusion equation in the following way:

4 olh0) = [ debe=9 V). ©

Here o(r,¢t) is the particle concentration,

In cases where Re{D(p)} = D(w) behaves as w'~* we
have ¢ (t) ¢ t~@~%, The dynamic conductivity is related to
the dynamic diffusivity by the generalized Nernst-Einstein
relation

op) = D(P) (6)

Re{a(p)} = o(w) is the ac conductivity.

2.3 Mean Square Displacement and Anomalous Diffusion

The mean square distance walked by the particle (mean
square displacement)

GO = ro-rOf ™

is connected via its Laplace transform {r?(p)) to D(p) by
[36]

D(P)

) = ®)

In the case of normal diffusion one has
{P(t)) = 6Dt.

Anomalous diffusion is present if {r*(f)) increases subli-
nearly with time. If, for example, D{w) x w' * we have
from (8) and the Taubernian theorems <{r’(t)) « t* If the
diffusion process is strictly anomalous the sublinear increase
of {F(t)> extends for ever. In many systems of experimental
relevance, however, there can be a crossover from anoma-
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lous to.-normal diffusion at a certain time-t, This corre-
sponds t0 a change in, D(w) from being frequency inde-
‘pendent for-w:< w, = tg~! to being frequency dependent
for o> wg.

2.4 Generalized Master Equation

As a consequence of (4) G (k, p) can be represented in terms
of a density relaxation kernel (memory function) in the fol-
- lowing way [37]:

Gk,p) = [p_m(kap) + m(a,p)]—l )

where m(k,p) has the following Taylor expansion

m(k,p) = m(3,p)—=D (p)k? (10)
so that

1 a \ 2
D)= —~{—) mek, 1
0= -3(zr) )| an

If one introduces the inverse Fourier and Laplace transform
of m(k, p), the memory function m(r,t) one has from (7) the
generalized master cquation for G(r,¢)

+0
§ #rmr=r,t=1)Gr;7)

e (12

d t
WG(r,t)=bfd'c|:—
+eo
+ d’rlm(r-r,,t—r)G(r,,r)]
—00

(12) is so to speak a continuum version of (1): the discrete
sites are replaced by the continous space variable and the
fluctuating hopping rates by the memory function.

The task is now to calculate (K, p) from the microscopic
quantities W It is helpful for formulating the EMA to make
the following ansatz for the memory function

m(r,p) = g dte~" m(rt) = g@)y(r,p). (13)

Here g(r) is the radial distribution function and y(r,p) has
the meaning of a frequency dependent hopping rate that
corresponds to a hopping distance r.

2.5 Effective Medium

We consider now a fictive plane which divides the dis-
ordered system of total volume @ into two adjacent regions
B, and B, of the volume 4 Q. If the starting point of the
motion lies directly on the plane one obtains from (12) the
following set of equations of motions for the propagators
G, and G, which are integrated over the regions B, and B,,
respectively:

PGi(p) ~ Gt =0) = 5 m(3) [G:(p)— Gi(p)]
(14

PG(p) — Gt =0) = 3m() [Gi() — G:(p)]
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here m(p) = m(k=0,.p). $m(p) is. the relaxation kernel
which controls.the density relaxation between the two regions.

We now create a “perturbation™ by considering a real pair
of sites i and j which are supposed to be situated on opposite
sides-of the plane. Around this pair the real rate equation
is supposed to be valid inside a volume 1Q, = in, =
/2N, on each side of the plane. N is the total number of
sites and n; is the site density. The perturbing “Hamiltonian
matrix” is given by

ne oy B0,
po| 2% N 5)
Ly @ me)

“T°2N, 2N, Y

The CPA/EMA prescription for calculating m(p) now con-
sists in postulating that on the average the T-matrix that
corresponds to ¥ should vanish [28 — 317, This leads to the
following self consistent equation

< [m@)/2N] — Wy }>

1=2(G,- G (2N =/ = °

(16)

Eq. (16) is very similar to the conventional EMA/CPA
Eq. [28~31]. The difference lies in the effective medium.
The latter is in the conventional theories a regular lattice of
sites with effective frequency dependent hopping rates. Here
we did not make any assumption about the structure of the
effective medium (except for homogeneity and isotropy).
By using (14) one can cast (16) into-the form

m(p)=N,< 2W2W"1 >
14 ( -

2 ) Ws-) (1—pGy)

ey

For performing the configurational average we assume that
the energy barriers Ey and the distances r; are distributed
independently so that we have for the distribution of the
Wit

1
P(W)dW; = E'g("u) o(Ey) &rydEy, (18)

If we now insert the explicit solution of (14) for the case that
the particle was initially in B,

6= 2 (p+ 22 o +-mo, 1)

we obtain in the limit N, @ — oo (keeping n; = N,/Q finite)

1

1
W,

+ 0 o0
m(p) = n; .f d3"n’;g ("ij) g dEle(Eij) 1
p+m(p)

(0)



o

?(np) = n, g dEyo(Ey) — 1

n
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Since we-want (20) to-hold for any distribution g (r;) (20) % 1 )
together-with (13) implies m(p) = a ._jw &r (j; dEN(E)— 1 ePE g¥ria (26)
: m(p)+p N v,

L

1 1)

+ .
p+m(p)  2W(ry,Eyp

so that

o L% exp{ikry}
mkp) =n, § Prygin) | 4By o(E) —H "
“ — + —
p+m(p)  2W
(22)
From (11) and (22) the diffusivity is obtained as

1
1 1
p+m(p) Y IWE B)
(23)

+ oo «Q
D= { @rrigl) [dE(E)

In the original derivation of the sell consistent EMA
Eq. [26] it had been noticed that one encounters a double
counting problem which is typical for self consistent mean
field theories It was shown that one can compensate this

-error by multiplying the density that appears in the self

consistent equation by a factor a, = Nlim (N NFYN: =
exp{—1}. e
In the dc limit this produces nearly the same results as

that provided by a percolation analysis [17, 33, 34]. Butcher

and Summerfield [38] have sug\gcsted'tu use instead the
inverse percolation number [17]. Incorporating this correc-
tion the EMA equation now takes the form

1
1 +
p+mp)  2W(E)

(24

+ 0 SO
mp) = an, | dro@ {[ dE o(E)

this version of the EMA compares well to numerical sim-
ulations of hopping models [25,39].

3. Examples

3.1 Variable-Range Hopping

For phonon-assisted tunneling of electrons in the localized
energy region of disordered semiconductors (variable-range
Kopping [12]) we use the symmetrized expression [26]
2W(r,E) = vye~2ria ¢FE (25)
where a is the radius of the localized wave functionand f§ =
1/ksT. Introducing the effective density of states N(E) =

" 1,0(E) and setting g(r) = 1 we obtain the following EMA

equation

If N(E) does not change appreciably. in the range kgT
around the Fermi level Ep one can take N(E) =~ N(Ep) =
Nr outside the integral and obtains by a partial integration

[25]

«Q
o (p) = L | dse §d —— @7
Ty o 1 + f’i
mip)+p  w
with
24
T = W . (28)
The dynamic diffusivity is then given by
__a@ T
D(p) = oa Togdxx 7 +E."_' (29)
mp)+p -~ vo

In Fig. 1 the real parts of m(p) and D(p) as calculated from
Egs. (27) to (29) arc plotted against w for different values of
T/T. It can be seen that a large frequency range of anom-
alous diffusion appears which becomes the more extended
the larger T/ T is.

10°?
3 E"" """""""" -
=) -
gwtE e
- 3
c - ’
= F /’
3100 /s
E - 7
g g
10"“’ rolf SR Y S R U N S NN N TN N S SO |
10716 1078 10°
log w
Fig. |
mi{w)/vo ( ) and D(@)m(eo)/veD(co) (— — —) for the variable-

range hopping model as calculated from Eqs. (27) and (29), resp.
for T/Ty = 10~5 105, and 10™*

In the d.c. limit w—0 we have from (29)

1
142

o3
1= F ge (30)
T o
with ¢ = —In(m(0)/w). For ¢ > 1 the Fermi function in
the integrand of (30) can be replaced by a step function with
the result

T
1==2¢.
0

61
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Fkom%hisfolloWs/Mott’s_[12] T law:

D)= 4‘;-(“) " )

T
m(0)e="1 exp {—(®/T"..

2

3.2 Classical Hopping
For classical over-the-barrier hopping of ions in disor-
dered materials we use the following form of W{r, E);

2W(r,E) = O(raax—1) o efE, (33)
The dynamic diffusivity is given by:
1 3
D(p) = ¢ R*mp) - (34
with
R:= | dre‘g] | drigl) (35)
(] ]
and the EMA equation for m(p)
@ 1
m(p) = Z a, g dEa(E)'"—r——;;ﬁ (36)
mm+p
where

Z =n, Tl drdnrig(®
0

is the coordination number of sites.
As can be seen from Fig. 2 where the self consistent so-
lution of (36) is plotted for a model with p(E) = const.

10°

—
<
w

lll l‘l'lllll

—
<
o

log (m(w)/v,)

10’9 "IN W T T R TR T R T B
107" 1075 10°
log w
Fig. 2

m(w)/v, for the classical barrier hopping model Eq. (30) for a con-
stant barrier distribution ¢(E) = P/ZapksT with P = 0.15, 0.4,
0.08, and 0.05

against frequency. the behaviour is quite similar to that of
the vatiable-range model.

An important qualitative difference lies in the dc behav-
iour of m(p). Setting w = 0 and defining again ¢ =
~In(m(0)/vy), the EMA equation becomer

1=2a, :f dEo(E) 37

1
1 4-efE=¢"

Setting £ = By the problem becomes equivalent to that for
finding the chemical potential in a disordered semiconductor
for a given number of carriers. For temperature T < u the
Fermi function can, again, be replaced by a step function
and we obtain

"
1=2Za,[dE(E) (38)
4] o

This yields an Arrhenius law for the d.c. diffusivity inde-
pendent of the details of the barrier distribution o(E) [40].
Egs. (31) and (38) for the d.c. jump rate deserve a further
comment, Let us consider the classical hopping model (33).
For finding the conductivity in this model one can use the
following percolation construction [17,33,34]: Let us con-
nect. all sites which have a distance less than ry., and a

-barrier between cach other less than E*, If the level E* is

chosen to be very low there will be only small clusters of
connected sites, The size of these clusters will increase if E*
is increased until at E* = p there exists a percolation path
through the system Eq. (38) is just the equation which math-
ematically describes this construction [17, 33,34]. The same
applies to Eq. (30) in the case of variable range hopping,
Here, the level which is shifted is defined by ¢* =
2ar* + iE* until percolation is achieved at £* = £, In the
limit of low temperature and/or density where the Fermi
functions in Eqgs. (30) and (37) become step functions, there-
fore, the d.c. version of the EMA becomes equivalent to the
percolation constructions of Refs, [17,33,34].

3.3 Percolation

In contrast to the “fictitious” percolation model! discussed
at the end of the last paragraph let us study now the fol-
lowing “real” percolation model: We consider a disordered
system of sites in which there is a bond between neigh-
bouring sites with probability x (concentration of bonds).
Two sites are defined to be neighbours if their distance is
less than rg,. Such a model can be descnbcd wnthm the
present formalism by the rates

C &
Wol(ropa—1) 0(E) connected

disconnected (39)

2W(r,E) = {

The EMA Eq. (24) for this case becomes particularly simple
1
S
mp)+p

mp) =

Zayx

@0,
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This is a.quadratic equation® for ni(p) with the solution

12

1 1
m(p) = 5 CWo=p) :[Z(a%—p)2+(e+ 1 Wop] @)
X=X . .
where ¢ = Za,x—1 = s the difference from the
0

percolation-threshold x, = 1/Za,. One has to choose that
solution which renders Re {m (p)} > 0. For @ = 0 we obtain

Wy2e>0
no = {3270,

For demonstrating the similarities but also the dissimilari-
ties between the models of the preceding paragraphs and
the percolation model m(p) as given by Eq. (41) is plotted
in Fig. 3. The common feature is that if the control param-
eter x takes valugs which.approach. x, from above there
exists an increasing frequency range of anomalous diffusion.

(42)

rlowever, while in the other models m(0) is always finite”

(albeit exponentially small for low temperatures and/or den-
sities) in the percolation model #(0) becomes 0 for a finite
value of x. (For X < X, the particles become localized inside
the percolation clusters rendering the system non-ergodic
[41,42]).

100

log (m{w)}/ vp).

107
log w
Fig 3
m(w)/ W, for the percolation model Eq. (41) with ¢ = 10~ 102,
10~3, and 10™*

Also the frequency dependence of m(p) is quite different
from that of the previous models. While the frequency ex-
ponent is 1/2 (mean field exponent) in the percolation model
the frequency dependence of m(p) in the other models only
resembles an ' =* behaviour in a certain frequency window,
but, as can be seen clearly from Figs. 1 and 2, the w'~* law
is not obeyed exacily.

2 This equation is very similar to the modc woupling equativn fur
the Lorentz model [41]. The critical exponents ncar the perco-
lation threshold are the same.

3.4 Crossover.from.Normal to Anomalous Diffusion

An important advantage of the EMA description of
anomalous diffusion in disordered systems as compared, for
example, with the phenomenological CRTW model [7] or
the single-site approximation [15,16,20—22] is-that a-pos-
sible crossover from anomalous to normal diffusion is ac-
counted for correctly, i.e. that in calculating the d.c. diffu-
sivity the percolative-aspects are treated properly. It is not
difficult to be convinced from the EMA Eq. (24) and Figs. 1
to 3 that the frequency «y in the neighbourhood of which
the transition-from normal to anomalous diffusion occurs,
is just given by the d.c. value of the generalized jump fre-
quency:
wy = m(p = 0) 43)
The value of this parameter decides whether or not one has
anomalous diffusion in a time region of interest: anomalous
diffusion occurs for t < ty = g™\,

4, Description of Different Experimental Manifestations of
Anomalous Diffusion

4.1 a.c, Conductivity and Related Data

As emphasized in the beginning the most direct evidence
for anomalous diffusion in disordered systems comes from
a.c. conductivity data. As an example we reproduce the com-
bined o(w) data extracted from several different types of
measurement [3] in Fig. 4 and compare it with the EMA
result (36) for classical hopping with constant o(E). The
anomalous frequency dependence predicted by the EMA
(only the activation energy of ¢(0) was adjusted to the meas-
ured value y = 70 kJ/mol) follows the experimental one
remarkably well.

[=]

= 2
IE B
'—u - -
IE 2 -4
3 L =
e 3
8 '6 o -8 E
S I @
o
Fais 0=
-10F -12
<12} %
1
Fig. 4

a.c. conductivity data of Na,0-3SiO, glass as compiled by Wong
and Angell [3] ( , A, W, 0, O) compared with the EMA
wahoulation for Jdssival hopping Ey. (30) with wunstant g(E), ad-
justed tu the activation energy of the d.o. conductivity, g = 701J,
mol (~ — =) from Ref. [40]
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4.2 Anomalous Transient Photocurrents in'Disordered.
Seimiconductors

In transient photoconduction (“time-of-flight”) measure-
ments carriers are created by a light flash on one side of a
semiconducting sample which subséquently are drawn to-
wards an electrode by a bias field. In ordered systems one
expects a constant current which suddenly drops if the car-
riers hit the electrode. If L is the sample thickness the mo-
bility u = (e/ksT) D can be calculated from the drift velocity
v = uF = Lfty (44)
where F is the field and ¢ is the transit time. In disordered

materials, however, one.observes a continously descreasing
current [6,7] which can be described by

t-(l—“)
J@) <

A

t<tr
(45)

with 0 < o < 1. Scher and Montroll [7] described such a
behaviour (“disrersive transport”) phenomenologically in
terms of a cont.nous-time random walk (CTRW) on a lattice
with a waiting time distribution ¥ (1) «c T="*%, In such a
model one has {r?(¢t)) o t* Obviously the anomalous tran-
sients are due to anomalous diffusion. For a microscopic
description one can use random trapping [27,43—49] or
hopping models [7,15,27]. As shown in Ref. [27] both can
be incorporated into a hydrodynamic description
[27,50,51] with frequency dependent mobility and diffusiv-
ity u(p) = (e/ksT)D(p), where the latter behaves as D(w) oc
@'~% The corresponding propagator is given by
G(k,p) = (p—ik p(p)F+ D(p) &)~ (46)
Inserting this into a planar geometry with reflecting bound-
ary at the front and absorbing ones at the back electrode
one obtains [52] for the Laplace transform j(p) of j(t)

1
1) =C=0L
(??,")zexn[—(v—n)la] (1 + Lo~ +n)L])

14+(y—n)/(z+n)expl -2y L]

7
where 5 = eF/2kyT and
vy = [nf* +p/D(P]™ . (48)
It has been shown in Ref. [27] that for times larger than
t = px' (where pg is the solution of py = D{p)y?) the
diffusion term in Eq. (46) can be neglecied and Eq (47) re-
duces to the expression given by Leal Ferrera [50].

=23 =] 5755

J(®) has to be calculated from (47) (or in the case t > tg from
(49)) for a given form of D(p) or p(p) by numerical Laplace
inversion.

The advantage of using the D(p) formalism is that one
can easily incorporate dispersive-non-dispersive crossover
effects [49] by using a model in which ¢, falls into the ex-
perimental time window. For observing a “plateau” in the
transient current pulse one has the condition [27,52,53]
R < lp < Iy

(49)

4.3 Neutrou Scattering

The incoherent neutron scattering law corresponding to
the particle’s motion in the disordered environment is given
by Eq. (3). In particular for the classical hopping model (33)
it is given by

S(k.) = =Re{(p +/(KIm(p)"") (50)
with the generalized Chudley-Elliott-function

Sk)=@4 nn,/Z)'? drr*g(r)[1 —sin(kr)/kr], (51
for k—0 we have, of course (cf. Eq. (4))

Sy =gkR? (52

Neutron quasielastic scattering is an ideal tool to probe
anomalous diffusion in a case where this cannot be done via

100_ ° #°o
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Quasiclastic incoherent neutron scattering data from H in amor-
phous NizsZrze, compared with the EMA prediction (Egs. (36) and
30y for the assival hupping miudel with o Gaussian ¢ (E) [56]
from Ref. (5b)
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an ac conductivity. measurement, namely in the case of hy-
drogen diffusion in:amorphous metals. If m(p) has a disor-
der-induced frequency dependence the spectrum should be
non-Lorentzian. This is, in fact, observed [5, 54,55]. In par-
ticular if m(p) oc »'=* one expects S(k,w) oc w'~*, In Fig.
5 quasielastic incoherent neutron scattering-data [5] from
H in amorphous NiyZrs are shown. It can be seen that the
data exhibit such a behaviour.

They can-be well fitted by a classical hopping model with
a Gaussian. ¢(E) as calculated by Richards [56] with the
maximum adjustéd to be compatible with the experimentally
measured [57] activation energy of the diffusion coefficient
D(0) [583.

4.4 Nuclear Spin-Lattice Relaxation

A useful method for obtaining information on diffusive
motion-in disordered solids is the observation of nuclear
spin-lattice relaxation as deduced from NMR [59,60] or
nuclear radiation anisotropy whlch followr a nuclear §§ de-
cay (B-NMR) [61].

In crystalline solids the temperature dependence of the

nuclear spin-lattice relaxation rate can be well described by
the BPP formula [62,63]
Tr'ecRe {(p. + W(T)™'} (53)
where W(T) oc exp{—pu/ksT} is the jump rate that corre-
sponds-to the (frequency independent) diffusivity D; py =
iy, + ¢ where o is Larmor frequency. In an Arrhenius
plot In 77! against 1/T one expects from (53) a symmetric
maximum with equal slopes of the wings being equal to the
activation energy u of the diffusivity. On the left side of the
maximum 77y is independent of w, (motional narrowing),
on the right it is proportional to w2 In amorphous ma-
terials there are strong deviations from BPP behaviour
[2,59~61, 64—66]. This is not surprising since (53) is based
on regular diffusion with a single activation energy. If one
averages now expression (53) — as frequently done in the
literature [1,3, 59—61] — over a distribution of activation
energies one makes the same mistake as in the approxi-
mation schemes labelled a and b in the introduction. A gen-
eralization of (53) which is consistent with the EMA analysis
is [4,11] .
Ti'ocRe ([p + flko) m(p, T)]7Y) . (54)
Here, ky is a wavenumber characterizing the spatial fluctu-
ations of electric field gradients or the distance dependence
of the magnetic coupling [4]. In Fig. 6 B-NMR relaxation
data [67] are compared with the temperature dependence
predicted by (54) where m(p, T) has been calculated from (36)
(classical diffusion) with constant g(E). The value of the
latter was adjusted to give the measured activation energy
of the d.c. conductivity. The frequency and temperature de-
pendence of the data is not followed in detail by the model
but the strong asymmetry and the deviation from 7! x
wi? is explained.
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BPP plot of the spin-lattice relaxation rate of 'LiO- B,O; glass [67]
comparcd with the approximate formula (54) where m(py, T) has
been calculated from Eq. (30) with a constant ¢ (E) adjusted to the
measured activation encrgy of the d.c. conductivity (from Ref. [4])

-Conclusion

The effective medium approximation comprises a simple
and reliable tool to describe jump diffusion in disordered
systems. Anomalous diffusion which is ubiquitous in dis-
ordered materials is explained as the result of strong fluc-
tuations of the microscopic transition rates which govern
the random walk of the particles. For models which can be
characterized by randomly fluctuating distances r; and en-
ergy barriers E;; simple formulae are given for calculating
the d.c. and frequency dependent diffusivity D (w) and con-
ductivity o(w). The only input information is the functional
form of the transition rates W({r,E) and the distribution
functions g(r) and p(E). The results of such calculations
compare well to numerical simulations of the same model.
The frequency dependence of D(w) and ¢(w) is given by a
generalized frequency dependent jump frequency m(p) for
which the EMA equation is solved. In cases where m(0) #
0 a transition from normal to anomalous diffusion occurs
at a frequency wp = 5! = m(0). In models with a broad
distribution of energy barriers this frequency can be expo-
nentially small at low temperatures giving rise to a region
of anomalous diffusion which extends over many orders of
magnitude. In this range D () resembles a o'~ behaviour
with 0 < « < 1 but this law is not obeyed exactly. A large
class of experimental observations caused by anomalous
particle diffusion can be described by the present formalism
ranging from ac conductivity and dispersive transient pho-
tocurrents to anomalous quasielastic neutron scattering and
NMR data.

I am grateful to M. Wagener for many helpful discussions and
for producing Figs. 1-3.
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We measure the protonic conductinity in water clusters adsorbed on lysozyme powders, below room

temperature. In the low temperature region the conductwvity increases with temperature as exp TS, in

agreement with prediction by the theory of dissipative quantum tunneling. We detect the onset of this

cffect near 180 K, where a glass transition in the protein matrix is known to take place. Quantum tunncling
matches smoothly with thermal hopping near 271 K.
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Previous work from this laboratory has shown:that hy-
drated lysozyme powders exhibit dielectric behavior due to
proton conductivity [1], and“that this behavior can be de-
scribed in the frame of percolation theory [2, 3]. Long range
proton displacement appéars.only above the critical hydra-
tion for petcolation k. (g water/g dry weight), when the 2-
dimensional motion takes place on fluctuating clusters of
hydrogen:bonded water molecules adsorbed on the protein
surface.. A similar 2-dimensional protonic percolation has
been detected in powdered smaples of purple membrane of
Halobacteriums Halobium [4]. In both cases the emergence
of biological function, respectively enzyme catalysis and
photoresponse, has been found to coincide-with the critial
hydration for percolation h.. More recently the above room
temperature studies have been extended towards other vi-
able systems [5]. Here-we report results on the low tem-
peratureé protonic conductivity of hydrated lysozyme pow-
ders, to investigate the possible occurence of proton quan-
tum tunneling in hydrogen bonded water molecules
adsorbed.on protein.

The dielectric tecnique has been already described [1] as
well as the procedure to evaluate the d.c. conductivity o of
the sample [4,5]. In this work the insulated electrode-ca-
pacitor is reduced to a two layer composite capacitor, one
layer.being the 1,8 mm teflon sheets and the other one the
4.5 mm lysozyme powder at constant water content h. This
capacitor was cooled to 170 K by cryogenic apparatus at a
rate of'3 K min=", Dielectric data from 10 KHz to 1 MHz
have been recorded while raising the temperature at a rate
of about 1 K min~", A typical run lasted about 6 hours and
included about 300 conductivity vs temperature data, Na-
tive lysozyme, prepared by Professor John A, Rupley (Uni-
versity of Arizona, Tucson) was at pH 7 [3]. The same
preparation, of about 0.3 g, was used in all runs, and it was
hydrated by the isopiestic method with either H,O or D,0.
Several H,O and D,O-hydrated samples have been studied,
and the pertinent parameters of each sample are shown in
Table 1. At the lowest temperatures here investigated the
conductivity is found temperature independend, and it is of
uncertain origin [6]. This limiting low value of o, varies
around gy = (6.3£0.6) x 10~°mho m~! because of lack
of reproducibility of capacitor geometry in different runs.
Above Tg! the conductivity increases with increasing tem-
peratures, and at Tg2 it displays a slight break. Both Tgi

Table 1
Parameters of investigated samples, defined and discussed in text
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Fig. 1

Natural logaritm of part of conductivity data plotted vs reciprocal
absolute temperature 1/T in‘the high temperature 1egion. In the
upper inset the activation energy H, defined as the limiting slope
reached by the data, is plotted vs hydration level for H;O-hydrated
samples

and Tg2 can be associated with protein glass transitions, as

-it will be discussed elsewhere,

As shown in Fig. 1, in the high temperature region the Ar-
rhenius law is accurately followed, with an activation energy
H slightly increasing with hydration level. Qur values of H
are close to 29.4 KJ/mol, the activation energy detected by
NMR for water reorientation correlation time [7], suggest-
ing that the mobility of the adsorbed water molecules must
be the major controlling factor for proton transport, if the
proton number density is assumed to be temperature in-
dependent. This last assumption is frequently made to de-
scribe the electric conductivity of biopolymers [8] and of
ice [9], where extrinsic charge carriers are believed to be
produced with an energy lower than the dissociation energy
of a water molecule. Thus at temperatures above about
260 K the rate process is controlled by a thermatly activated
hopping of charged defects over an energy barrier which is

h a, 8o H tga 1

Sample bydr. ©/8) (10~ mho-m=1) (Keal/moY) 08 k9 8

1 H,0 007 55 + 02 - - . - -

2 H,0 0.13 60 + 02 +055 389 + 0.06 1634 + 025 173 & 002

3 H0 017 60 + 02 —003 495 + 008 2079 + 034 276 + 001

4 H,0 021 73 + 03 —040 616 + 0.06 2587 £ 025 390 + 010

5 H,0 022 63 + 03 —028 561 % 001 25.56 + 0.04 432 ¥ 001

6 H,0 031 61 + 02 +148 667 + 006 2801 + 025 7.00 + 002

7 D,0 022 69 + 03 - 589 + 0.06 2474 % 025 375 + 004

8 D0 006 60 + 02 - - - -
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Fig. 2

Natural logaritm of part of conductivity data plotted vs the sixth
power of the absolute temperature 7% in the low temperature range.
In the upper inset the slope tgo and tgf of the straight lines (see
Fig. 3) focussing respectively on (Tg;, ay) and (Tg, 05) are reported
Vs hydration level A, Solid linc is best fit through data included
between véitical bars

temperature independent, in agreement with current models
[10] for proton transfer in H,O networks.

In the following we shall consider the temperature region
where tunneling may prevail, A general theory of quantum
tunnel out of a metastable state interacting with an envi-
ronment at temperature T has been produced by Grabert,
Weiss and Hinggi (GWH) [11], with the finding that for
damping of arbitrary strenght, the tunneling decay rate al-
ways matches smoothly with the Arrhenius factor at a cross-
over temperature and that heat enhances the tunneling
probability at T=0 K by a factor exp [A(T)]. For un-
damped system A(T') is exponentially small, whereas for a
dissipative system A(T’) grows algebrically with tempera-
ture, Of particular interest here is the case of tunneling cen-
ters in solids, where A(T’) increases proportional to 7" at
low temperature, with n = 4 or 6. In order to test the GWH
theory, in Fig. 2 we have plotted the log (conductivity) data
versus T% and we find that a remarkably simple description
can be offered as follows. In this T plot, the conductivity
data Ino(h, T') can be fitted by straight lines originated near
Tgt and o, ~ gy, and after a break can be fitted by straight
lines originating at Tg2 and g, > a,. Fig. 3a shows the pro-
cedure followed to detect the focuss by linear extrapolation
of the data, imposing a small but arbitrary displacements
Aoy to all conductivtity data of each sample, to take into
account the above mentioned difficulty to reproduce the
capacitor geometry. The focussing on Tg2 is insensitive to
this correction because here o > 64. As shown in Fig. 4, even
the linear T* plot is accurately followed up to a crossover
temperature range of about 10 K, where it merges with the
lower temperature side of the Arrhenius law shown in Fig.
1, as required by GWH theory [11]. Finally, we have fitted
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Fig. 3

The same as Fig. 2 including H;O-hydrated samples at hydration
level 1 = 0.31 (pentagons), 0.22 (circles), 0.17 (squares), 0.13 (trian-
gles). Solid lines are best fit through data, Conductivity data shown
in (a) have been corrected by an arbitrary Aag reported in Table 1
and discussed in text, Sample at h = 31 has not been included in
(a) because affected by large hysteresis at Tgl. From these plots we
have evaluated Tgf = 182 £ 2K and g, = 6.6 £ 1 x 10~" mho
mLand Tg2 =203+ S5Kand o3 = 88 £ 4 x 10~? mho m™!
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Fig. 4

Natural loganitm of all conductivity data near the crossover region,
plotted vs reciprocal absolute temperature (upper suale) and vs the
fourth power of the absolute temperature (Juwer suale) Solid lines
are best fit through data included between orizontal bars

.our data with different values of #, but Fig. 5 shows that

only n = 4 gave results comparable with n = 6, as predicted
by GWH theory [11].
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Statnsucal best fit (%) of all conducuvny data plotted versus n, thc'

exponent used in"GWH theory, defined in Text

Although the linear dependence of Ino on T* or T° re-
quested by GWH is certainly. fullfilled, this theory requires
that proton tunneling start at T=0 K and that it depends
.on the mass of the carrier. We believe that this apparent
contraddiction between GWH theory and our data can be
easily overcome by suggesting that charged defects are free
to tunnel across an energy barrier only above the protein
glass transition’ temperature Tgl, when the adsorbed water
cluster behaves as a supercooled fluid,

In conclusion, our data show that theory can be used as
a guide to describe dissipative quantum tunneling in a mo-

lecular process. Proton tunneling displayed by hydrated:bs-
ological systems below room temperature has beén reported-
elsewhere [12]:

Several discussions with Prof Peter Hénggi (Augsburg) are grate-
fully aknowledged. This work was supported in part by LN.F.M.
and by EEC projects SC1000229.
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The quantum analog of Kramers reaction rate for a dissipative environment is derived on the basis of a
periodic orbit approach for multidimensional tunneling. The resulting reaction rate expression holds at
all temperatures, thus covering [in contrast to the imaginary free energy method (“bounce-"method)] the

Introduction

Quantum reaction rate theory underwent profound de-
velopments within the last decade. In particular, the recent
progress in the quantum theory in presence of dissipation
[1,2,3,4] enables one to generalize the classical theory of
Kramers for the rate coefficient in a dissipative environment
to the quantum regime [3, 5-9]. Our focus will be on the
semiclassical limit of the quantum-transition-state-theory
(QTST) in presence of an infinite number of bath degrees of
freedom which mudel the dissipation, i.e. we shall elabourate

Ber. Bunsenges. Phys. Chem. 95 (1991, No. 3

& VCHVerlaysyeselishaft mbH, B -0940 Weinhetn, 1991

classical and the quantum regime on the same basis.

on a unified approach to the dissipative quantum Kramers
rate in a metastable potential }'(x) in which the reaction
vourdinate x of a reactive particle of mass M s coupled to
a continuum of bath degrees of freedom.

Conventional quantum-TST represents  rather patchwork
affair. In doing quantum calculations one replaces Uassical
partition functions by their yuantum counterparts, assuming
sepatability of the various vibrations and, ot rotations near
the saddle puint, and then corrects for multiple crossings
near the barrier tup by the multiplivation of 4 temperature-

WUS-SU2L,91,U3030379 5 350 % 25,0
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dépendent Wigner-like.transmission-factor- [10,11]. There-
fore; this approach.essentially réstricts the quantum treat-
ment to the high temperature limit. It was only until recently
that the case of dissipation (continuum of bath-degrees of
freedom) has been discussed within this approach in a beau-
tiful paper by Pollak [12].

Within the last decade, the quantum-Kramers rate-has
originally been studied over the whole temperature regime
by the Augsburg-Essen-Polytechnic-Stuttgart school [5, 7,
8, 9,13, 14] and the Moscow school [6] which all made use
of the imaginary-free-energy methodology [15]. The pri-
mary object of this latter method is the dissipative bounce
(instanton/anti-instanton) solution. This periodic solu-
tion — in absence of the influence of dissipation — has been
introduced in Miller's semiclassical quantum-TST for non-
separable systems [16], see also Refs. [17—20]. Following
the original reasoning. of Miller [16], we.shall re-evaluate
the quantum-Kramers rate results [3, 5—~9] by use-of the
multidimensional WKB-approach for the quantum-TST
rdte in terms of periodic orbit theory [21,22]. In doing so,
we cover the whole temperature regime from T = 0 up to
room temperature on a unified basis. In a previous item
[23], see also Refs. [8b,9], we have already reported the
results of the continuum limit of this multidimensional
WKB quantum rate approach. In this paper, we present a
more extended discussion of the various approximations
used in arriving at the quantum-Kramer's rate expressions,
and give additional new results,

Quantum Reaction Rate Theory

Throughout the following we shall assume that there ex-
ists a true time-scale separation for the dynamics within the
locally stable state at x = x,, i.e. ¥(x,) = 0, and the dy-
namics characterizing the passage through the bottleneck of
the metastable potential, V'(x) (e.g. a cubic potential) sepa-
rating products from reactants. Then, an initial nonequili-
brium population decays exponentially for times longer than
the typical time-scale for nonactivated molecular processes
within the well. Thus, the rate coefficient & becomes truely
time-independent; it can formally be expressed as the flux
integral [24,25]

k= Z5" Re[Tr{exp(—BH) 3(x) (o/M) 2}]. 1)

Here, Tr denotes the trace, f§ denotes the inverse temperature
and Z, is the partition function of the metastable state at
Xg < 0, x = 0 indicates the transition state, and £ is the
operator that projects onto positive momentum states p in
the infinite future (t — o). H denotes the total (system plus
bath) Hamiltonian operator. The reaction coordinate x of
the escaping particle ranges from x = — o0 to x = + .
With a few manipulations this formally exact rate expression
can be cast as an integral over a flux-flux autocorrelation
C(1), i.e. [26]

k=27t ? C(t) dt @
0

where with.t, = ¢t — ihf/2

Cit)y="Tr [ﬁ'exp(th";/h) Fexp(=iHt/h)], (3)

wherein F = —;— [B(x) (p/M) + (p/M) 6(x)] is the symme-

trized flux operator.

Semiclassical Quantum-Transition-State-Theory

Following Miller [16] the quantum — TST approxima-
tion to the rate k cunsists in the replacement in (1):

30 0/ M) # = 3891, @

and then proceeds by use of the sémicla;sical approximation
for the Boltzmann propagator. Thus, one obtains [16]

kmrkrsr= 237 Re ({daCalesp(~PH)I@YSGIZ 151}, . 6)

Here, ¢ = (90 = X, 41, ..., qx) are the coordinates of all the
degrees of freedom of the system, (x) and bath, (g3, ..., qx).
In going from (1) to (5) we made use of a Weyl ordering (or
the operator §(x) |%|, [16], i.c. we can replace the trace in
(1) by the phase-space average over the Wigner function, By
use of the semiclassical expression for the propagator
exp(— fH) the corresponding phase space [16] integration
has — in consistency with the use of the semiclassical result
— been evaluated within the stationary phase approxima-
tion (SPA). This procedure then yields (5). Continuing in
this vein and evaluating the trace in (5) also in SPA yields
a continuum of stationary phase points. This continuum of
SPA-points just defines the unstable periodic orbit, or the
bounce solution [16]. In view of the Boltzmann propagator,
however, this periodic orbit exists for pure negative imagi-
nary times only, i.e. the Wick rotated time ¢ — t = it, is
real and positive. We now measure distance along this pe-
riodic orbit, g, = x, with all other coordinates being or-
thogonal displacements away from it. Therefore, all the in-
tegrations over the orthogonal displacements can again be
evaluated within SPA. In terms of the Green’s function

1.

-i% i )
m—ngtexp{z(E+ls—H)t}

= G(E + i)

6)

we have with
exp(~iHi/h) = —2‘; [ dE exp(~iEt/h) G(E), (7a)

and f = it/h the formal identiy

exp(—pH) = ln?*—zl;- T dE exp(—pE)G(E +i07).
o (7b)
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¢ Insertinig (7).into (5) yields the rate coefficient kst as a Boltz-
mann.average

- i ) o0 .
krsr = Z; ' Re {?1; 6[ dE exp(—BE) 9

+§ 4a5@) 314 aIGE+i0M1a].

In virtue of this expression involving the Green’s function
one never has to construct a-multidimensional wave func-
tion. This feature represents a great advantage when treating
the effects of dissipation.

The trace in (8) can now be evaluated by use of unstable

(periodic orbit theory [22]. Integrating within SPA over the:

_orthogonal fluctuations, with ¢ = g, fixed, and then inte-
grating over ¢, (which is trivially.accomplished due to the
d-function in (8)) yields Miller’s central result [16]

pam—rs -2-1%? dE exp (—BE) k(E), (92)
where the cumulative reaction probability reads

o]
k(E) = L (=1y"oxp [—n $ (E)/h] o)

. ’f]‘ {2 sinh [% n T(E) w,(E)]}—| .

Here, ¢(E) is the abbreviated (Euclidean) action integral’

along the unstable periodic orbit of period T(E) = —¢'(E)
on the inverted potential landscape (Wick rotation of time
t = —iT(E)). The set {o,(E),i = 1, ..., N} are the stability
(angular) frequencies of the unstable periodic orbit. If, ¢(E)
is positive (low temperatures) we note that only the n = 1
term contributes significantly to (9a).

Next we use the selfconsistent solution of

N 1

Er=E- E. (n,- + —) haoy(Er)

> (10)

as the energy Er which is left in the reaction coordinate
while the system is crossing the saddle point with the bath
being excited {n,} in corresponding modes. Following the
reasoning of Miller [27] which he put forward to obtain the
improved quantum condition for the eigenvalues of an er-
godic system, we now construct an improved, and rather
appealing expression for £(E), i.e. following Hinggi and
Hontscha [23] we use the tunneling energy in (10) and set
- [9,23]

o

-1
5 et}

(g canunty

k(E) = 11)

In doing so, we have “unexpanded” the corresponding ex-
pressiont 1 (9b) which results if the sinh-fots are expanded
-into geometric series {for more details, see Refs. 9, 28).

TR SRS R P D Rt R

R L R R T .
e Sl o By

Eq. (11) represents a uniform WKB-approximation to k(E),
which bécomes exact in multidimensional, separable para-
bolic-like potential landscapes. We stress that (11) accounts
for the anharmonic nonlinearities in the reaction coordinate
x; but neglects the influence of anharmonicities for the
“transverse” bath degrees of freedom.

With k(E) given in (11), the quantum-TST rate is obtained
by insertion of (11) into (9a) and then performing the re-
maining summations and the integration over the range of
total energy E of system plus bath. It also should be noticed
that this procedure yields a closed expression for the mul-
tidimensional quantum TST-rate that holds true for all tem-
perature [23]. Further, with the density of states for a har-
monic oscillator, i.e. o(E) = (2n h/T(E))~" it follows on
inspection of (9a) that the quantity
I'(E) = k(E)/T(E) (12)
denotes a semiclassical expression for the microcanonical rate
coefficient at total conserved energy E.

Periodic Orbits: A Useful Identity

Before we proceed to evaluate more explicitly the dissi-
pative -quantum-Kramers rate in the continuum limit we
shall reconcile the various approximations leading to (9).
First the trace operation in (5) naturaily leads within the
semiclassical limit to the consideration of periodic orbits
which give the dominant contributions to (5), In view of the
Boltzmann propagator exp(—pH), such periodic orbits,
which pass through the transition state location (sce (8)), do
not exist in real time but only in (ncgative) imaginary time
t = —it, i.e. T = it. Therefore, it is advantageous to con-
sider the Euclidean version of the propagator. In original
time t, such negative imaginary time periods imply for the
SPA-evaluation of (6) a distortion of the integration path
into the lower complex half-plane. In other words, we
aualytically continue the semiclassical propagator
{qlexp(—iH t/h)|q> to complex times't = ~—it. The ana-
Iytically continued Green’s function then formally reads [28]

GIGEI~ GBI = 3

. ‘j; dz exp(Et/h){ qlexp(—tH/h)|q) -

(13)

The tume integration inherent in (13) must be understood to
be performed in SPA with the integration path deformed so
as to go through the stationary points in the direction of
steepest descent. This procedure is consistent with the use
of the semiclassical approximation. Such an approach gen-
erally requires some care near conjugate points [focal sur-
faces], see [29]. This SPA integration fixes the period of the
periodic orbit 74 = T(E), such that the corresponding
classical energy of the periodic orbit equals the value E =
Epcotr, o The final trace over g in (8) is then calculated
following the recipe of Gutzwiller [22], i e all the transverse
displacements along the periodic orbit are again evaluated
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in .SPA, while the final integration over g, would simply
yield the period T(E). By accounting for multiple transver-
sals of the periodic orbit, T(E) — n T(E), and keeping track
of the phase changes of the periodic orbit at conjugate points
yielding the phase (—1)-(—1)"~"!, one obtains for the trace
of the analytically continued Green’s function G.(E +i0*)

= —%139 dt exp(Et/h) exp(—tH/h) by use of the Refs.
¢
[16,22] the result [28]
JdgcalGaE+i0Migy = L ey
+ X (=17 exp(=nd(E)/H)

-;Ifll {2 sinh [% nT(E) w,(E)]}_‘ ,

(14)

" Note that in (13) the fundamental period T'(E) is obtained
independent of the number of periods. This is so because
T(E) stems from an integration over ¢, and not over time
7. The multiple traversals must be accounted for because to
obtain the SPA result we must sum over all solutions for
the period T(E) = T, (E) yielding a fixed energy E [30,31].
Thus, we deal with an infinite sequence of stationary points
along the (negative) — imaginary time axis, t, = — inT(E);
i.e. 1, = nT(E). More generally, the result in (13) would be
improved further along the line of reasoning of Hiinggi,
Weiss and Riseborough [32] by including not only real
times 7, but also complex-valued time periods 7, ... =
nT(E) + ik T,(E) + ..., yiclding a fixed energy E. Here, the
index e stands for “Euclidean” and m for “Minkowskian”,
in reference to the corresponding regions of the non-in-
verted, original potential landscape such as the barrier re-
gion (e), or the reactant and/or product region (m). In par-
ticular, apart from the normalization factor Zg™' the rate
expression in (9a) is observed to include information about
the classically forbidden region (transition-state region)
only. Thus, just as with the imaginary free energy bounce
formalism — any interference effects to the decay rate stem-
ming from the classically allowed quantum dynamics in the
non-inverted potential landscape is not accounted for. Such
effects, for example, include backscattering from reactant
regions [32], and/or curvature effects of the classically al-
lowed reaction paths.

In Gutzwiller’s procedure, the trace is calculated keeping
the fluctuations zero at a fixed point on the periodic orbit,
and integrating over these fixed points at the end (yielding
the period T(E)). Likewise, the trace can be evaluated by
considering all closed orbits and allowing both for longi-
tudinal and transversal fluctuations around a fixed periodic
orbit (). For the trace of the Wick-rotated Green’s func-
tion

Jdq <a1Gu(Bla> = S~ [ dvexp(eE/I) T exp(—cEi/h]
1

one alternatively can evaluate the semiclassical limit follow-
ing the reasoning of Callan and Coleman [20]. Use of the
SPA (in function space) for the trace in (15) yields stationary
solutions obeying §(0) = §(x). Among those are two con-
stant solutions §(t') = x, characterizing the stable state dy-
namics (i.e. it yields Z,, see below), and 4(r) = 0, charac-
terizing the barrier motion. In view of (8) we consider now
only periodic paths passing forth and back the transition
state, We shall restrict the following discussion to low tem-
peratures; i.e. the rate controlling relevant energies E in the
expression (9a) all are lying below the barrier energy E =
E,. With this in mind, we consider for (15) such r-values for
which the nontrivial periodic solution §(0) = §(z) is real-
valued. Setting for a general periodic path
q(r') = ‘7(7') + zn: % (7') (16)
with x,(t’) obeying periodic boundary conditions x,(0) =
X, (7), one considers — for small i — terms in the action up
to quadratic order only. In our case, we consider the Eu-
clidean Lagrangian for a harmonic bath coupled bilineary
to the nonlinear reaction coordinate x.

M, &1 { ( Ci )2}
L=+ V)+ L Smidl + Y+ x)
(17

Following the standard procedure, one finds after integrat-
ing first over the harmonic bath degrees of freedom in terms
of the dissipative bounce trajectory §{z’) and the well-known
non-local (Euclidean) Lagrangian Ly [5—9, 13, 14] for the
trace the result [28]

Trlexp(~tH/M)] = iAr( So )”2 ﬁ: [ZSinh(%rQ,)]—’

2nh im

“|det’ 8 S, |72 exp [—S.(q,7)/h], (18a)

where

/2 . T . T .
Se=M | du@(u)S. = JL(q q) du=[Lqlq qldu.
= 0 0 (18b)

det’ indicates that the Goldstone mode contribution of the
eigenvalue zero must be omitted. A4 is a normalization con-
stant to be determined below. The t-integration in (15) 15
again calculated in SPA. This yields the condition E =
0 §./07, i.c. this fixes the period topy = T(E)spa to equal
the total energy E, i.e. S, = ¢(J) + T(E)E. With E in the
classically forbidden regime we need to consider the prim-
itive orbit only of period T(E), i.e. G, = G!". Insertion of
(18) into (15) yields

Jda<al & +i0%)ig) = 2 5§ T(E)

- [det' 88, |7 (= 0% $¢/07) 7] "2 :

. {iln] [2 si;lh (% T(E) 9,)]_1} exp [—¢(E)/h].

(19)

=1
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Hereby. we observe that the SPA yields a phase i-=-exp(i
n/2), which with (—1) iA({) = A yields a real quantity for
the-analytically continued object (14, 15). The normalization
-constant, 4, stemming from the measure over {c,}, can be
obtained if we evaluate Z,, i.e. we use §(0) = §(z = T(E))
Xo. This yields [28]

2, = Al 72, fvl [2 smh( T(E)Q)]‘l | (20a)

'.Il_glox [2 sinh (5 T(E) 1?)]—' .

Here, the set {4?},i = 0, 1, 2, ..., N, are the normal mode
(angular) frequencies at the metastable state § = x,. Upon
expressing A by use of (20b), one finds with n set equal to
one upon the comparison of (19) with (14) the important
identity:

Sl (ldetﬁzs Iq-x., )1}2 =z (_ﬁ)llz
[det'*S.lz / ~ ° 012 JrmTiE)

ﬁ [2 smh( T(E)w,(E))]—l .(21)

(20b)

This relation is of use for the explicit evaluation of deter-
minants, Note also, that in contrast to (14), the SPA in the
time integration for (19) is performed here at the end, while
for (14) it defines the first step in the approximation scheme,
thereby fixing the period t = T(E).

The Quantum Kramers Rate

Following Hiinggi and Hontscha [23], we now present
explicit results for the Kramers rate of a particle that inter-
acts with a continuum (N— co) of bath modes, cf. (17). In
terms of the spectral function

Sy == % L

2M = my Q; —2),

22)

the Laplace transform the memory-friction kernel y(t) can
be expressed as

J(w)z

- 2%
) = ;oj dwm. (23)

First, we shall consider high temperatures T"above the cross-
over temperature T, [5], i.e. with kg the Boltzmann constant

h

T>T, = i (24)
where p denotes the positive root of
221 1.,
=[E2 s at|” - 150 @)

and'w, = |M~' V" (g, = 0)|'”. In other words, p-denotes
ihe dissipation-modified normal mode barrier frequency
wy— u(y). With E; > E,, the effective abbreviated action
¢ (§) is negative. Thus the cumulative reaction probability
is not exponentially sensitive, and with kzT/E, < 1, an-
harmonic corrections are negligible. Thus we can use a har-
monic approximation, i.e. the period T(E) assumes a con-
stant value T(E) = 2n/u and the stability frequencies can
be approximated by the normal modes in the saddle point
region, i.e. ;(E)— A. The abbreviated action thus reads
¢(Er) = (Ey—Er) 2n/p < 0. (26)
Upon an interchange of the integration in (92) with the
summations we find

kst = Z5! ZLMn.....TZ:N exp {—BLE,+X (n.+ )h}"]}

exp {p[Eb+§ (n, +-1-“)h).}’ -E}}

-JdE , (27)
/ 1+exp{/3°[Eb+Z<n,+ )ﬁi, -E]}

where 8, = 2n (h p)~". Setting

X = exp {ﬁ[Eb+Z (n,+ >h/’z - E}},

the integral in (27) becomes with x, = x(E = 0)

T dx L dx
-] —
K Id’°1+x”°”’ A U 1 4 xPlb i1+x”°”’]
X~ hom BB

Bo=p)
28)

= 1 [sin(rp/p1™" —

where-;— < ¢ < 1. With BE, > 1, this correction can be

neglected to give after corresponding summations

1 2sinh(hp23/2) { X 2sinh(hpi2/2)
krst=

2r 2sin(hfu/2) n-12slnh(hp1}>/2} exp(—BEy),
(29)

By use of the Pollak identities [12], the products in (29) can
be related directly to the dissipation 7, i.e.

frsr (> 79 = (L% exp (~ )

. @2 + 12 v* -+ oy (nv)
" onmt @i+ 1P+ nwy ()

(30)

0

where v = 2a/hf, W2 = M~' V" (x = Xua).
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kst (T ~ T)) =

T, the above approximation diverges
atT="T, proportlonal to (T — T )" Thus, near T = T,
we muist account for the nonlinearities of the potential land-
scape. Setting more accurately. [23],

$E)= G- EN T 43 EB-EATEN, G

.and- proceeding as above we arrive at

w, sin(hfyu/2)
wp (2nh | T A

w2 4 1 + nw y(nw)

) — ¢ + 1?4 vy (nv)

B TS T [

+ 0 [exp(~ BB/ (BLE)'™) (2

where Erfc(x) = 2n~2 | dy exp(=y?) = erfc(—x). With
-

v* —w} + vy (0) = a(T— T;)/T we recover the known result
of the imaginary [ree energy method [6, 7, 8, 9, 14, 23, 33].
At low temperatures T <. T;, the cumulative reaction
probability becomes with ¢(Er) > 0 exponentially small
and we must treat the full nonlinearity of the potential. The
integration in (9a) can then be approximated by keeping
only the term with n = 1,
This integration can be performed within SPA to yield [8b,

9]

kst (T < T)) = Z5™* (2nh| T (Eg))~" exp(—Sy/h)

: ,ﬁ [2 sinh (% h Boo (E,,))]_'

where T’ = 0T/OE. The SPA condition yields T(E) = hpf,
and E; = E[T(E) = hf] denotes the corresponding sta-
tionary phase energy. S, is the dissipative bounce action of
the periodic orbit with period # 3, i.e.

(33)

hp
So= | Lalr) dz. (34)
0
Upon noticing that
..a‘lsc ~1 52¢(E) ,
( o7’ )t-hﬁ =T l=£s = IT'(Eg)l > 0 (35)

we find by use of the identity in (21) the alternative expres-
sion, i.e.

detd®Scl;-s, m>m exp(—Sy/h).

S, \12
kst (T<To) = (21tfl> <m
(36)

P2

This latter form precisely equals the imaginary free energy
result 3, 5—9, 14].

Conclusions

By use of the semiclassical TST of Miller [24] and the
periodic orbit theory we managed-to obtain from (9a, 9b,
11) all the previously derived results for the quantum-Kra-
mers rate. This approach has for all temperatures the same
common basis, i.e. the rate expression in (9a). We have thus
demonstrated that the continuum limit of this quantum TST
precisely equals the dissipative quantum-Kramers theory.
‘At high temperatures T > T, the results approach up to
quantum corfections (see Ref. [34]), the classical Kramers
rate derived fifty years ago [9, 35], i.e.

[O)
kTST (T> I, N— UJ) - kKramcrs = 'a% i?o exp (-BEb) ’ (37)

where for zero memory friction [35], y(t) — 27 &(2), i.e.
) =y .

~(Z

The above given results therefore generalize the classical
treatment of Kramer’s dissipative rate to the full (dissipative)
quantum regime which extends from T = 0 up to room
temperatures.

) 12 1
+ wp -=7. (38)

2
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Influence of Non-Linear Dissipation on Quantum Tunneling
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The influence of a non-linear dissipation mechanism on the dynamics of a particle, which performs

tunneling through a potential barrier, is investigated, The particular dissipation mechanism considered

contains terms quadratic in the normal modes of the heat bath, in addition to lincar couplings. The non-
‘linear terms are shown to affect the incoherent tunneling rate.

»

1. Introduction

Quantum tunneling i$ an important physical phenome-
non which occurs in an gngrmous variety of different phys-
ical system [1—11]. It is/therefore not surprising that- this
phenomenon has been:studied extensively [1—14]. Quite
early on in the study of tunneling processes, it has been
realized that the coupling to a heat bath plays a crucial role
in the tunneling dynamics [2]. The coupling’s action is two
fold: Fxrstly, it allows the tunneling particle to absorb and
emit the elementary excitations of the heat bath, thereby
establishing a thermal distribution in the particles energy.
Secondly, the coupling also has the effect of renormalizing
the dynamical properties of the tunneling particle.

With only a few notable exceptions [5,6], most of the
studies of tunneliag dynamics have been restricted to con-
sideration of a particle coupled to a harmonic heat bath, in
which the coupling is restricted to be linear in the normal
modes of the heat bath {1 —14]. In such systems, the eflect
of the linear coupling is to coherently distort the thermal
reservoir in the vicinity of the particle, thereby causing the
effective potential expenienced by the particle to be luwered.
At low temperatures, conservation of energy considerations
result 1n tunnehng motion being furbidden, unless the dis-
tortion of the thermal reservoir also moves and accompanies
the particle. The dressing of the particle by the coherent
distortion of the thermal reservoir results in the tunneling
rate being suppressed, at low temperatures [2,3,11,12]. As
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the temperature is raised, thermal excitations wash out the
coherént distortion of the thermal reservoir thereby increas-
ing the tunneling rate [2,12]. Moreover, the particle may
(infrequently) absorb sufficiently larze numbers of thermal
excitations of the reservoir's normal modes that thermally
assisted or activated hopping may occur [2,12].

In this manuscript, we consider the effect of including the
lowest order non-linear terms in the coupling of the particle
to the heat bath on the tunneling dynamics. In section 2,
we describe the model system and in section 3 we review
the general formulation for the tunneling rate. In section 4,
we calculate the tunneling rate, and in section 5 we discuss
the results.

2. The Model System

The system is modeled by a Hamiltonian containing three
terms
H = H, + H; + Hy,, (1)

where H;, describes the one dimensional motion of the par-
ticle in a potential }7(), and H, describes the dynamics of
the thermal reservoir and H,, describzs the coupling be-
tween the particle and the thermal reseroir The Hamil-
tonian governing the particle, H,, is given

Hy, = p2M + V{9, 2
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where pand.gare the canonically conjugate momeéntum and
coordmate of the particle. The Hamiltonian describing the
thermal reservoir, -H,.can-be written as

H, %fo-—hvzm(d/dxowmw,/z AT

This describes.a set of Einstein oscillators with frequencies
;. The term that- -couples.the.particle with the thermal res-
ervoir is written.as Hy., where

Hp.,ﬁzl(A,qx,—fB,qzx,z). @

’

This coupling contains the usual bi-linear coupling between
the particles coordinate q and the coordinate of the i-th

- Einstein .oscillator, as-well as. the bi-quadratic coupling in

the oscillators coordinates. The latter terms are also quad-
ratic in g,.so that in the absence of asymmetry in the po-
tential ¥ (g), the total system of particle and heat bath re-
mains invariant under spatial inversions. As we.shall de-
scribe later, the above choice of non-linearity in the coupling
to the thermal reservoir is the only type which yields relevant
modifications-to the.exponential part of the tunneling rate.
The interaction terms:which couple the particle to the ther-
mal reservoir also modify the potential ¥(q) experienced by
the particle, leading to an effective potential Vr(q) given by

V@) = Vig)— +2B,¢?)

+ Z': hw2{[1+2B,¢}mwi)?=1}."

2 1240 o}
)

* - The first correction term to Vg(q) can be considered the

result of displacing the i-th Einstein oscillator through the
distance a, where

a= Aig/mo} + 2B;q%,

and the second correction term is the shift in zero point
energy of the oscillators due to the change of frequency from
‘w; to a new position dependent frequency w,,;, where

w}; = o} + 2B,q%m.

Stability of the heat bath, in the presence of a particle at a
fixed position ¢, requires that B be positive and in addition
the non-linear coupling term is an even function of g, if no
cutoff on the range of ¢ is to be imposed. It is seen that the
effect of the non-linear coupling term is to reduce the change
in potential produced by the linear term, whereas the change
of potential due to the zero point motion is already of vrder
hand is irrelevant in the calculation of the exponential terms
of the W.K.B. tunneling rate.

In the next section we shall consider the effect that the
coupling to the heat bath, has on the tunneling dynamics of

. -

Fig. 1

The effective potential Vir(g) has a metastable minimum located at
q=0 which defincs the zero of encrgy, the potential at the local
minimum has curvature of Mw$. The zcro damping cscape point
is denoted by qo

the particle, In particular, we shall consider the case which
Ver(q) represents an asymmetric potential with a single met-
astable local minimum located at g =0, of the type shown
in Fig, 1 The local curvature at the origin will be denoted
by M}, and the point at which the particle escapes from
the potential barricr, at zero damping, will be denoted by

9o

3, The Genaral-Formulation

The tunneling rate can be expressed in terms of the Feyn-
man Functional Integral Formulation of quantum mechan-
ics [7]. The Trace over the normal mode coordinates of the
heat bath is performed, leading to an effective action which
contains terms non-local in time, that represents the effect
of the dissipative coupling to the thermal reservoir [7,8].
Unlike the case of linear coupling, the dissipative term is
not merely a quadratic form in ¢. After analytically contin-
uing from real to imaginary times the Green’s function eval-

:uated in the metastable minimum, transforms into the par-

tition fitnction for the metastable state. The partition func-
tion is evaluated by expanding about the extremal
trajectories, as in the W. K.B. or semi-classical approxi-
mation [9,10]. The tunneling rate is then expressed in terms
of the imaginary part of the free energy [9]. If one further
assumes that only the lowest action trajectories make sig-
nificant contributions to the partition function then, one
immediately obtains the lifetime of the metastable state in
terms of the single bounce trajectory [9,10].

We shall first derive the effective action, including the
leading relevant terms appropriate for the non-linear dissi-
pation, in addition to the well-studied lincar terms [11 - 14].
Cnly, the leading exponential terms 1n the rate of decay of
the metastable state will be evaluated, as they dominate the
propertizs of the tunneling rate. The eaponential terms can
be expressed as the difference between two smallest extremal
values of the action, and therefore van be evaluated varia-
tionally [13].
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The coupling to the set of Einstein.oscillators which com-
prises the thermal reservoir, yields terms.in the action of the
type

T2 T2

—AY@mw) | dt | drq(®)e@)
~T2 —T2 .
~cosh [, (T/2— |t ~¢'}))/sinh o, T/2
T2

+ Bihj2may)- | dtq(t)cothw, T[2
-T2

oo m
+BiAif@mif) | dt | dv [ deg*(0q@)e(t)
N PR PR 3

«cosh [,(T)2 — |t — ¢’'))cosh [ey(T/2 = |t — ¢"))}/sinh %, T/2

TR TR
- Bihfam*w}) | dt | dY ¥ (04*(r)
-2 -
-cosh?[w;(T/2 — [t —t'))/sinh3e; T}2
+ o ©

The first term, can be recognized as the effect of the linear
coupling at finite temperatures [11 —14], when evaluated as
an integral over the finite range of — 72 to T/2, where T'is
related to the inverse temperature via T = hf, It is usual
to separate-out the static term, which renormalizes the cf-
fective potential, and the time dependent dissipative terms.
The static terms are then canceled by appropriate counter
. terms in V(q), so that the T = 0 value of the effective po-
tential Ve(q) remains of a specific form [11]. The second
term in Eq. (6), represents the effect of the zero point motion
of the-Einstein oscillators on the bi-linear coupling term, it
merely produces a static renormalization of the effective po-
tential quadratic in ¢. This can be recognized as the second
term in the expansion of the second correction term in Eq.
(5), and in accordance with our previous remarks can be
neglected since it is explicitly of order k. The third term in
Eq. (6) actually represents the leading relevant correction to
the action due to B;, the relevant higher order terms are
generally of the form B} A?. The last term displayed repre-
sents both the dissipative and static term of order Bf. This
term is negligible as it is proportional to h. Similarly, the
dissipative and static terms of order Bj' are all negligible,
.since they are explicitly of order h.

Following Ref. [11], we shall assume the distribution of

the thermal reservoirs normal modes and coupling appro- -

priate for ohmic (linear) dissipation, we shall also assume
that B, scales with w?, as suggested by the form of Eq. (5).
The dimensioniess ratio B;qé/mw? will be denoted by 7. In
the following, we shall investigate the effect of the dissipative
part of the action which is of leading order in 7.

4, The Tunneling Rate

We shall evaluate the tunneling rate out of the metastable
minimum of the temperature independent effective potential,
Fig. 1, i.e.

V(g = Valg) = M2 0 q*(1 - 4/q0)- Y
The calculation proceeds by utilizing the ansatz
q(t) = af(l = bcos(2nt/T)) ®)

for the bounce trajectory [13], and the parameters a and b
are to be evaluated variationally. The physically acceptable
values are those where both a and b are real and b lies in
the range —1 < b < 1. The variational procedure follows
along'the lines of Ref. [13]. We find that the leading effect
of y is to produce a term in the exponent of

—may Mo gs (a/g0)'/(1 — )P4 F[(1 —b?)~"7], (9a)
where F(x) is a positive definite function given by ‘
o
FX)= X [(x—1)/(x+1)] 201 +0l+tn+nh
Byuniymm —0 . (9b)

Iy +ma] + x} - {In] + Il = Iy mal /(I |+ 2}

For small values of b, the function F[(1 —b*~"*] tends
to zero as 11/4b% Furthermore as b tends to unity,
F[(1 - b¥~"2] diverges to positive infinity as (1 —b?)~2% An
analytic expression for F(x) is given in the Appendix. In the
above expression a = 3/(2wp) is the usual dimensionless
coupling strength characterizing the linear ochmic damping
mechanism [11—14]. The non-linear dissipative term given
in Eq. (9), can be compared to the usual dissipative contri-
bution

+ma Mgl (a/go) b1 — b)?. (10)
Clearly, for pbysically acceptable values of a and b, the term
proportional to y shown in Eq. (9) has the effect of reducing
the exponential suppression of the tunneling rate due to the
bilinear coupling, given by Eq. (10). Simultaneous extre-
malization of the total action, with respect to a and b, yields
a set of coupled algebraic equations which simplify when
written in terms of the natural occurring variables [13],

y = (afqo) - (1 = %)™, (112)
and ‘
X = (1—-b)=1, (11b)
The equations take the form
Qrks T/hwo? 1/2(3x2 —1)

+ aRukgT/hay)2x —ayy? Qrks T/hw)d F(x)  (12a)

+1-3yx=0,
and
Qrky T/hwo x (6 —1)

+ 2a2mky TIhawg) (x*—1)
(12b)

— 4ayy?(2nky T/hawo) 4 F(x)
+2x—3/2y(3x*~1)=0.

The simulianeous algebraic equations posses a non-trivial
solution for T < T, where T; is the cross-over temperature
that does depend on y. The corresponding action is analo-
gous to Eq. (5) with n =1 in Ref. [13]. (Nota bene: A factor
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Table 1
The value-of the action S in-units of (M, q}), for increasing values of «
and y

b4

* 1 2 3 4 5
000 04799 05287 09395 13687 18048 22440
005 0179 0441 0732 1035 1346 1661
040 04799 0368  0.560 0950  1.149

0.754

of « is missing from the denominator of the left hand side,)
At zero temperature the simultaneous equations can be re-
duced to the fifth order polynomial equation,
S2ut+2au—16/9aydu(2—u*p=1=0, (13)
where 0 =41In2 4 7/24. The corresponding action, at zero

temperature, is given by substituting the solution for u into
the expression

S/(nMwoqi) = 1/92—u?)?
[u+oa—4/9ay5(2—u??].

This process yields the values of the action shown in Table 1.
For zero strength oi-the non-linear damping coupling con-
stant 7, the action can be expressed as

S/ Mwoqd) = (4/75)2 {10 + a}/4&* + 10 ~ 2a?}?
[+ /A2 £10)/5.

As shown in Ref. [13], the variational approximation given
by Eq. (15) differs by less than 6% from the exact numerical
value for the action [14]. This expression also shows that
‘the action increases monotonically with increasing strength
of the linear dissipation mechanism. Table 1 shows that the
presence of a finite value for y yields a reduction of the
exponential suppression of the tunneling due to the linear
dissipation «. This result is in agreement with the physical
picture that, at low temperatures, the exponential suppres-
sion occurs because the particle tunneling must be associ-
ated with a corresponding coherent motion of the distor-
tions in the thermal reservoir. The discussion following Eq.
(5) makes it transparent that the non-linear coupling reduces
the size of the distortion and hence reduces the size of the
cexponential suppression. At higher temperatures the action
is reduced until, at T, the bounce collapses onto the con-
stant value g(t) = 2/3 g, corresponding to the maximum of
the potential ¥Vq(q). At this temperature the solution for x
tends to unity and y tends to 2/3. The cross-over tempera-
ture is given by the expression

(14)

(15)

@rksTofhay) = |/o*(1 —44/97)* +1 —a(l —44/9y).  (16)

The cross-over temperature is increased for increasing ¥, in
accordance with our finding that the lowest order non-linear
dissipation mechanism under consideration leads to a re-
duction of the effective value of the linear dissipation
strength a.

5. Conclusions

The bi-quadratic coupling between the particle and the
thermal reservoir, has been shown to effect an increase in
the tunneling rate, through a reduction of the suppression
produced by the bi-linear particle-thermal reservoir cou-
pling. In the absence of the bi-linear coupling term, the bi-

'quadratic term has no effect on the leading exponential

terms of the W.K.B. tunneling rate. This is in agreement
with earlier studies [5, 6], which show that in such cases the
suppression of the tunneling rate still occurs, but only in the
form of pre-exponential factors. In fact, dimensional analysis
shows that any perturbative non-linearity in the heat bath
normal coordinates, whether in the description of anhar-
monic normal modes by themselves or in the coupling to
the particle, are irrelevant as far as the calculation of the
exponential term of the W.K.B, tunneling rate.

The authors would like to acknowledge the support of the U.S.
Department of Encrgy, Office of Basic Encrgy Science, through
grant DE FG02-84ER-45127, We would also like to thank Profes-
sor Doctors H. Grabert, P. Hanggi and U, Weiss for many stim-
ulating discussions.

Appendix

The function F(x) expressed in Eq. (9.b) as a summation can be
evaluated analytically. The result is given by the expression,

F(x) = 124(x —i) 75>+ 343x2 4 181x = 15)
4 12(4x 1) (x3 =~ 1) In(2x/(x + 1)
+ 12@x =3) x)/xT= T {In((x + 1)2)
+ 2In(1 + Ve =1/ix + 1)}

— 1/4(8x% + 8x + 1) (x + 1)? In(x).

As x tends to unity, F(x) tends to zero as 11/2 (x—1), while as x
tends to infinity F(x) diverges as x* (4ln? +1/24).
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Semiclassical and quantum mechanical transition state theory is reviewed and two new approaches
described. One is a general implementation of a semiclassical rate expression [Miller, Faraday Discuss.
Chem. Soc. 62, 40 (1977)] that involves the “good” action-angle variables associated with the saddle point
{i.e., transition state) of a potential energy surface, The other is an cvaluation of a formally exact quantum
expression for the rate [Miller, Schwartz, and Tromp, J. Chem. Phys. 79, 4889 (1983)] in terms of Siegert
eigenvalues associated with the transitionstate. Siegert cigenvalues are usually associated with scattering
resonances, so their identification with the saddle point of a potential surface, and the expression for the
reaction rate in terms of them, is quitc an uncxpected and novel development.

I. Introduction

Transition state theory [1] is without a doubt the most
commonly used theory for describing chemical reaction
rates (and also rate processes in many other fields), for both
unimolecular and bimolecular reactions. The purpose of this
paper is to suggest two new transition_state-like theoretical
approaches for determining such rates, the first a semiclas-
sical one and the second fully quantum mechanical. In order

to focus on the basic theoretical ideas which are the subject -

of the paper, all expressions below will be written explicitly
for total angular momentum J = 0; for applications to real
molecular systems it is of course necessary to carry out the
transition state calculation for cach value of J separately
and then combine them appropriately. The remainder of the
Introduction summarizes the basic notions of transition
state theory and earlier related work.

The microcanonical and canonical rate constants are both
conveniently expressed in terms of the cumulative reaction
probability N(E),

k(E) = [2nho(E)]~' N(E) (1.1a)

o

k(1) = 2nhQ (T)]~! § dEc~PE N(E), (1.1b)
where E is the total energy of the molecular system, T the
temperature [ = (kT)~"], o is the density of reactant states
per unit energy, and Q, is the reactant partition function.
(k(E) is usually of more interest for unimolecular reactions,
where it is known as RRKM theory, and k(T) typically of
more interest for bimovlecular reactions,) The cumulative re-
action probability is in turn given by the sum of tunneling,
or transmission probabilities over all states n = (ny,...,1p)
of the “activated complex”

N(E) =

; P.(E). (1.2)

The activated complex is the system of F-1 degrees of free-
dom (F is the total number of degrees of freedom of the
molecular system) for motion in the dividing surface normal

Ber. Bunsenges. Phys. Chem. 95 , 1991, Nv. 3
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to the reaction coordinate (the Fth degree of freedom) which
separates reactants from products. If for some statesn, P,
were to equal 1, and for all other states equal to zero, then
N(E) would simply be the number of states for which the
transmission probability is unity. In general, therefore, one
may think qualitatively of N(E) as the “number of quantum
states that react”, as a function of the total energy of the
system. In the limit of classical mechanics N(E) is also pro-
portional to the microcanonical average of the one-way flux
through the dividing surface [2].

The transmission probabilities {P,(E)} are thus the pri-
mary objects which must be calculated, and then Eqgs. (1.2)
and (1.1) give the reaction rates [3]. The simplest approxi-
mation for them is obtained by assuming that the reaction
coordinate (mode F) is separable from the (£-1) modes of
the-activated complex. In this limit
P,(E) = Py(E-¢), (1.3a)
where & is the encrgy eigenvalue for state # of the activated
complex, often approximated as harmonic,

eF o i haog (m + 1/2), (1.3b)

and Pyy(Eg) is a one-dimensional tunnehng probability,
often approximated by the uniform semiclassical expression

P(Er) = [1 +¢2%EA] 1, (1.3¢)

where O(E,) is the one-dimensional WKB barrier penetrat-
ing integral

0(Eg) = I dgeV/2m[V(gr)

barrier

—Eg)/H*. (1.3d)

If the barrier potential V(qr) is furthermore assumed to be
harmonic (i.e., a parabolic barrier), then

(Vo — Eg)

O(EF) = hlw]-‘l s

(1.3¢)

VUS-9U.21,91,0303-038Y S 350 +.25,0
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where wp = —i|wg| is the imaginary barrier frequency.
(From Egs. (1.3) one can readily see the general character-
istic P,(E) = 1 for Ex = E—¢¥ > V,.) The totally har-
monic limit of the theory thus requires only a normal mode
analysis at the transition state (saddle point of the potential
surface) in order to determine the frequencies {ws},
k=1,...,F, and also, of course, the barrier height V,. As
. simple as this totally harmonic result is, it is the general
basis for describing the effects of dissipation on reaction
rates (i.e., Kramers’ theory) [4].

A more rigorous expression for the transmission proba-
bilities is given by the “instanton” model [5], i.e., a semi-
classical theory that involves a periodic classical trajectory
on the upside-down potential surface. In this case, 20(E) is
the classical action integral (in pure imaginary time) for a
complete cycle about the periodic orbit, and {w,(E)},
k=1,...,F-1 are the stability frequencies for an infinitesimal
perturbation about the periodic orbit. The major advantage
of this theory is that one need not choose the reaction path,
or even the dividing surface, in some ad hoc manner, but
rather the full F-dimensional (classical) dynamics selects the
reaction path (i.e,, the periodic orbit). The transmission
probabilities are given in this theory by

Fui -
Pa(E) = {1 +cxp [20(15)-20'(5) Y hoy(E) (m + 1/2)]} ,
kewt (1'4)

which one sees is very similar in structure to the separable
result given by Egs. (1.3a)—(1.3d), i.e,

F=1 -
prande(p) — {l -+ exp [20 (E - k),:‘ hog (g + 1/2))-]} |. (1.5,

The primary differences are, first of all, that 0(E) in Eq. (1.4)
is computed along the periodic orbit and not along a sep-
arable one dimensional path as in Eq. (1.5). Also, the con-
stant frequencies {w*} in Eq. (1.5) are replaced in (1.4) by
the energy-dependent stability frequencies of the periodic
orbit. And finally, the periodic orbit result, Eq. (1.4), inher-
ently assumes that the energy in the activated complex is
small compared to the total energy, and the exponent in Eq.
(1.4) is expanded to first order in this energy. If the action
integral 0(E) were a linear function of E — i.e,, if the barrier
were assumed to be parabolic, as in Eq. (1.3e) — then this
would not be an approximation, but in general it is. Thus
the periodic orbit result, though clearly better in many ways
than the separable approximation, has the defect that it is
not correct in the separable limit if the barrier is anharmonic.

I1. Semiclassical Transmission Probabilities Including
Anharmonicity

A more rigorous way of including anharmonicity into the
transition state transmission probabilities is based on the
set of “good” action-angle variables associated.with the sad-
dle point on the potential surface [6]. The good action var-
iables about a saddle point are in complete analogy with
those associated with a minimum on a potential surface. In

the latter case one can compute classical trajectories, deter-
mine the invariant tori, calculate the topologically inde-
pendent action integrals, etc., in order to determine them
{71, but this is not possible for the case of a saddle point
because the trajectories will “run away™. It is necessary to
express the classical Hamiltonian in terms of the good action
variables by some analytic prescription [8].

The general result of this approach [6] begins with the
classical Hamiltonian expressed as a function of its “good”
(i.e, conserved) action variables, E(l,...,...,J¢). One of
these actions is identified with the reaction coordinate, /;
say, and realized to be imaginary,

Ir = —ih0/n (2.1a)
while the other (F-1) actions are quantized in the usual sem-
iclassical fashion,

L = (m+1/2)h, (2.1b)
k=1,...,F-1. The cquation
E = E(lll,...,np.|.0) = E(”,O), (2.2)

is then solved to express 0 = 0(n, E) as a function of E and
the F-1 quantum number #. The transmission probability
then has the semiclassical form
P,(E) = [1 +¢*%E]~1, (2.3)

As an elementary example of this general prescription, con-
sider a harmonic saddle point, for which

F

E(lyseunde) = Vo + kE' Iy . (24a)

Making the replacements in Eq. (2.1), with wp = —i|wg),
and solving Eq. (2.2) leads to

0 E) = R

- 1
Flor] (Vo + 2 hoy (m+1/2)- E), (2.4b)

i.e, Eq. (1.3¢), the harmonic result discussed above.

A less trivial application of this general prescription Eqs.
(2.1)—(2.3) was given recently [9] by using perturbation the-
ory to include the effects of cubic and quartic an-
harmonicities about a saddle point. If {qK}, k=1,...,F
denote the usual mass-weighted normal mode coordinates
at the saddle point (ie, the harmonic potential is
Vo + Zk: 12w} q#), and

o'y )
=|— 2.5
Jo ( 0qx 0q;0q; /a=0 @53)
o
ﬁqlm = ( aq aq} aq‘ aq—m )q= o (2.5b)
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are-the cubic and quartic fofce constants, then thé classical.
énergy is given in terms of the good actions {;} by

~F F

E(hyeods) = Vot X oxle+ X Swlle,  (26)

where the anharmonic constants {x. -} are given in terms
of the cubic and quartic force constants,

1 . ﬂi:(8w3—3wf)]

= oo [ = & @t
1 £ frkn fim

Xp = ;‘_[ﬁcku_ )) [’SL—ZIL
Dk W mel W (2.7b)

: 2fim (@} + 0f =30f) ]
met (o + @) = wh] [0 — ) —wi]])’

for k #1. With the replacements indicated by Eq. (2.1),
Eq. (2.2} is a quadratic equation for 0 which is readily solved
to give

0. B) = Z2E- 2 ). e
W N1+ /1446 AE[(h2r)]
where
AE =V, + ¢ —E (2.9a)
with
£l
g = X hag(n +1/2)
k=1 (2.9b)
F-1
2
+ <En B Xl 4 1/2) (- 4+ 1/2),
and
Fo1
hQp = hiyp - kZl W2 %e (e + 1/2), (2.10a)
with
65[.' = iwp = I(DI.I s (2101'))
S'kp = —ixkp, (2100)

(Xxr is real). Egs. (2.8)—(2.10) incorporate anharmonicity in
the energy levels of the activated complex (cf. Eq. (2.9b)),
anharmonicity in the reaction coordinate 1tself (via x ), and
coupling between the reaction coordinate and modes of the
activated complex (i.e., reaction path curvature) through the
anharmonic constants X in Eq. (2.10a).

It is useful to note that having the energy to quadratic
order in the actions, Eq. (2.6), van describe anharmonic ef-
fects quite realistically. Morse vscillator vibrational cigen-
values, for example, are given exactly through second vrder
in(n + 1,2). Also, consider the popular Eckart potential bat-
rier

V(x) = V,sééh?(ax) , (2:11a)

which is often used to model anharmonic barriers. The one-
dimensional WKB action integral for it is given by

2m
0E) =1 |- (/Vo~VE), (2.11b)
so that the energy as-a function of 8 is
_ 0 2V, 0)2 ha?
E@) =V, — - ha - (n T (2.11¢)

i.e., the energy is given exactly as a quadratic function of
the action. One thus feels that Eq. (2.6), and the transmission
probability that results from it, can have a useful range of
validity for including the effects of anharmonicity of the
transition state.

Is it possible to apply the general semiclassical theory of
Eqs. (2.1)—(2.3) non-perturbatively? The following proce-
dure is one scenario. The idea is to use quantum mechanics
to obtain the energy in terms of the quantum numbers (i.e.,
action variables) by diagonalizing a Hamiltonian matrix.

Thus suppose that the potential is harmonic plus cubic
and quartic anharmonic terms. One first imagines that all
the frequencies {ew}k =1,...,F are real and writes out the
simple (analytic) matrix representation of the Hamiltonian,
H, x, in the harmonic oscillator basis (where here m and o’
denote F quantum numbers). After the matrix elements are
calculated, one makes the replacement

Op — —ileI ’

whereby the matrix H, , becomes complex symmetric. Di-
agonalizing it thus gives complex eigenvalues, i.e., the com-
plex energics that would result in the perturbation expres-
sion Eq. (2.6) if all the actions were replaced by I, = (m +
1/2)h,k=1,...,F. That is, when diagonalizing a Hamilto-
nian matrix to obtain eigenvalues — the non-perturbative
quantum mechanical procedure — all the actions have “au-
tomatically” been set to their quantum vaiues, i.e., (half-
integers)xh. To apply Eqs. (2.1)—(2.3), therefore, it is nec-
essary to fit these numerically obtained eigenvalues to an
analytic function of the quantum numbers, such as Eq. (2.6)
or possibly a more general function, e.g,, a Pade approxi-
mant. Once the analytic function E(m) is determined, one
can then make the replacement Eq. (2.1a), solve Eq. (2.2)
and obtain the transmission probability via Eq. (2.3).

IHL. A Fully Quantum Rate Expression

The discussion at the end of the previous section describes
& queantu mechameal calculationdl procedure (diagonaliz-
ing 4 patticular complex symmetne Hamiltonian matnx),
the result of which is then used in o semiclussica! theory.
This seems wasteful; i.e., after one has done a quantum
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calculation, one_would like to be able to determine the rate
fully quantuin mechanically.

This is posslble by realizing that-the complex eigenvalues
discussed ai the end of Section I'are the Siegert eigenvalues
[10] of the system. This is clear when one considers the
boundary conditions satlsﬁed by the corresponding eigen-
functions. For modes k = 1,.
functions have real’ 1requencx¢s so that the eigenfunctions
will decay in these coordinates in the usual fashion, For
mode F, though, with wp = —i]wg[, thé harmonic oscillator
functions have the form
$nr(ar) ~ exp(ilwrlg?/2h) - H(qr), 3.1

where H is a polynomial in g,. This function is an outgoing
wave in both directjons g » 0 i.e,, the Siegert boundary
condition,

As has been used recently in quantum reactive scattering
theory [11], though, an outgoing wave basis set is what is
necessary to construct a finite basis set representation of the
Green's function G*(E) (provided one is interested in matrix
elements of G* between short-range states). Thus if {E,},
{wi(@)}, 1 =1,... arc the complex eigenvalues (ImE; < 0) and
corresponding eigenfunctions that result from the calcula-
tion described at the send of Section II, then one has the
approximation [11]

E |'P1> <l

G*(E) = E BT E

(3.2)

which becomes exact in the limit of a complete basis. (Note
that there is no complex conjugation of the wavefunction in
the bra symbol) The microcanonical density operator is
then given by [12]

SE—H) = — %ImG*(E)
1
=~ 5= (G* ()~ G(E) (33)
_ 1 lw <ol i {wif|
T T 2mi [Z: E—E  E-Ef J

Since the time evolution operator can be expressed as

[
e=illlih = | (E e~ §(E—H), (3.4a)

use of Eq. (3.3) in (3.4a) — and noting that ImE; <0,
ImE§#> 0 — and evaluating the integral over E by closing
the contour in the lower half plane, gives (for t > 0)

-llltjh

Z e Eh S (. (34b)

Eqgs. (3.3) and (3.4) make it possible to carry out a direct
evaluation of the exact quantum rate expressions given by

..,F-1"the harmonic oscillator .

Miller, Schwartz, and Tromp [13]. Thus the canonical rate
constant is given by

K(T).=-07" | de.Cy(), (3.52)
]

where the flux correlation function is

Cf(t) = {r [elllt/h e~ PR Eo~BHI2 e»lllt/hF] , (3.5b)

where Fis the flux-through-the-surface operator..Use of Eq
(3.4)in (3.5b) (and some straightforward mampulatxon) give
the flux correlation function as

= — 2 QR Flp)? e ~PEED gitEl = Eafh (.6)

Since Im(E} — E;) > 0, this correlation function decays ex-
ponentially as t— oo, the correct behavior (which has not
been obtained in previous basi. set calculations of this cor-
relation function [13,14]), With Eq. (3.6), the time integral
in Eq. (3.5a) can be readily carried out, giving

K(T) = = Im 3, (CpHEFIp) e~ e B ),

0, &)

One can similarly use Eq. (3.3) to evaluate the flux expres-
sion for the cumulative reaction probability N(E),

N(E) = %(nh)2 tr[FS(E—H)F3(E—H)]. (3.98)
The result of this calculation is
CpllFly)? (el Flp)?
NE) =W Ry G EnE-F) ~ E-ENE-F)"
(39)

It remains to apply Egs. (3.7) and (3.9) and test their ease
of use, generality, and efficiency (i.e., how rapidly conver-
gence is achieved with increasing size of basis set), It is nev-
ertheless interesting to see how these formally exact quan-
tum rate expressions can be written in terms of the Siegert
cigenvalues (and eigenfunctions) which are related to the
transition state. Siegert eigenvalues usually are discussed

-only with regard to scattering resonances [10], for which

the imaginary parts of the cigenvalues are small. Here, on
the other hand, the imaginary parts are large — e.g,, for a
parabolic saddle point

ImE, = —hlog|(tr +1/2)

ne = 0,1,2,... — and have nothing to do with resonances.
This appears to be a totally new context for these quantities.

This work has been supported by the Director, Office of Energy
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A theoretical framework is discussed in which imaginary time Feynman path integration is adapted to

definc a quantum mechanical free encrgy for activated rate processes. Recently developed variational

theories for the estimation of this factor, as well as the quantum dynamical corrections to the rate constant,
are also discussed.

I. Introduction

Voth, Chandler, and Miller [1] (VCM) have presented an
analysis of thermally activated rate processes that has ex-
tended several aspects of the classical description of such
processes into the quantum regime, As an outgrowth of their
analysis, VCM have argued [1] that the exact quantum
mechanical rate constant k for a general activated process
can be sensibly written in a way similar to the classical
theory as [1]

k—x’k—leexp( BF¥, m

where f§ equals 1/ks T, Q, is the quantum reactant partition
function, k is a correction factor of order umty, and the
quantum free energy of activation is given by

F¥ = ~kaT In[Q¥/(m2ni*p)"). @

In Eq. (2), 0¥ is the equilibrium “path centroid density™
[1,2], defined as the constrained imaginary time Feynman
path integral [3]

Ber. Bunsenges. Phys. Chem. 95 (1991 Av. 3

& VCH Verluysgesellschaft mbH, W -6940 W emheim, 1991

= [ Dx() Dq(2)3(g* — @o) e=SH- =M, ®

where ¢(7) is the reaction coordinate which has a transition
state value of g*, the vector x(7) constants the nonreactive
“bath” degrees of freedom, and S [q(z), ¥ (v)] is the imaginary
time action functional [1—3]. The quantity g, in Eq. (3) is
the centroid of each reaction coordinate quantum path ¢q(z)
and is given by [1,2]

1
go = —Iyg dzq(). @)

A quantum transition state theory may be readily defined
from Eq. (1) by approximating x to have a value of unity
[1]. Such a theory has considerable potential for applica-
tions to many different physical problems because, in the
spirit of classical transition state theory [4], no explicit
quantum dynamical information is required to estimate the
rate constant [1]. Additionally, the central quantity Q* in
Eqgs. (1) - (3) (the centroid density) van be directly calculated
[1] from imaginary time path integral Monte Carlo tech-
niques [5]. In fact, Eq. (1) has been successfully employed

vous-9021,91,0303-0393 § 3.50 +.25,0
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for,a number of problems, [1,6,7] and methods to determine
the.dynamical correction factor to Eq. (1) (either exactly or
approximately) have also been proposed [1,8,9].

The justification of the quantum rate equation in Eq. (8)
may be pursued from-three complementary points of view
[1]: The first.approach relates the centroid density [Eq. (3)]
to the expressions for the quantum raté constant for the
multidimensional parabolic barrier model [10—12]. In that
case, Eq.-(1) is exact provided k is taken to be the Grote-
Hynes generalization.of the Kramers dynamical correction
factor.[1,4,9]. Although the usual quantum parabolic bar-
rier model [10—-12] exhibits a pathological divergence for
temperatures such that hf25" > 2n (where Ag" is the mag-
nitude .of the true multidimensional parabolic barrier fre-
quency [11,12]), that model can be extended to calculate
the centroid density for realistic potentials at low temper-
atures via a variational principle [1].

The second justification [1,2] of Eq. (i) relates the cen-
troid density to the low temperature “instanton” expression
[4,13] for quantum rate processes which are dominated by
tunneling. In that case, x is again close to unity and its
explicit derivation is discussed in Ref. [1]. The latter semi-
classical analysis, although more general, gives the same
result as Gillan’s insightful low temperature path integral
centroid density analysis of a double well potential coupled
linearly to a classical bath of harmonic oscillators [2].

The third, and probably most rigorous, justification of the
quantum rate formula in Eq. (1) is closely related to the
method for calculating quantum rate constants put forth in
Ref. [1]. In that paper, a procedure was outlined which
facilitates the efficient sampling of activated quantum dy-
namics. In the case of such dynamics, the reactive “events”
which take the system from reactants to products are quite
rare because of the potential energy barrier separating the
two stable states. In classical mechanics, of course, the prob-
ability of barrier crossing is essentially given by the free
energy of activation. The analogous quantum mechanical
quantity was argued in Ref. [1] to be the centroid density
in Eq. (3) by noting that it is, in fact, the underlying factor
in the complex dynamical weighting functional which dom-
inates the overall value of the rate constant. The sampling
of the quantum reactive dynamics in thereby greatly facili-
tated by constraining the centroid of the thermal quantum
paths to be in the region of the classical transition state [1].
In a sense, the centroid constraint defines the appropnate
quantum “activated complex™ in the path integral language,
while at the same time allowing for the delocalized nature
of the quantum dynamics.

In the present paper, two aspects of the quantum rate
constant formula in Eq. (1) will be explored. In Sec. II, a
variational theory for the quantum activation factor
exp(—fF¥) will be outlined which maps the realistic prob-
lem of a nonlinear reaction coordinate barrier potential cou-
pled to a linearly responding medium into a simple separable
parabolic barrier reaction coordinate. A particularly useful
limiting form of this equation will also be derived. In Sec.
111, the problem of the quantum dynamical correction factor
will be addressed by virtue of a4 multidimensiona: parabolic

model and a similar variational technique [9]. This analysis
of the dynamical correction is in the same spirit as the clas-
sical Kramers/Grote-Hynes theory, [4,14] particularly as
re-formulated by Pollak [11,12]. Concluding remarks are
the given in Sec. IV.

II. A Variational Effective Barrier Model for the Centroid
Density

In order to calculate the quantum activation factor in Eq.
(1), one must evaluate the constrained Feynman path inte-
gral (or centroid density) in Eq. (3). As a complementary
and insightful approach to the direct numerical calculation
of Eq. (3) [1] by path integral Monte Carlo [5], approxi-
mate analytical approaches may also be pursued (see, e.g.,
Ref. [1] for one possible variational extension of the para-
bolic barrier model). Most activated rate problems [4] are
well described by an imaginary time action in Eq. (3) given
by

STa@, *@] = | dr{ §07 + VL) 5

-+ IZ 2 xl(t)z + Vq\: [q(x), t(T)]}

where V;[q(z)] is the nonlinear potential along the reaction
coordinate g, and ¥, [q(1), x(z)] is the potential energy term
which contains both the potential for the bath coordinates
x, and the couplings between the reaction coordinate and
the bath,

For an environment which is well described by linear
response theory, it is now well known that the bath can be
represented by an effective set of harmonic oscillators cou-
pled linearly to the reaction coordinate [4, 15]. Specifically,
this physical situation is accounted for in Eq. (5) via the
potential term

N

qu (q- x) = lgl

2
-%-miw, (\, + -’—;—0-)—(1) (6)
In the above equation, m, and w, are, respectively, the mass
and frequency of bath oscillator i, while ¢, is its coupling
constant to the reaction coordinate ¢. This model is also
based on the assumption that the reaction coordinate po-
tential F(g) in Eq. (5) is “renormalized” so as to contain the
equilibrium averaged contributions from the interactions
with the bath [i.e,, J;{y) is a potential of mean force [16]].
The bath potential term contained in Eq. (6) therefore rep-
resents a Gaussian model for the fluctuations of the forces
on the reaction coordinate about a mean value of zero. The
fluctuating external force vn the reaction woordinate at ¢*
in this model has the form

V.
6Fexl"'_'( aq )

where the quantity £ is the equilibrium value of the wour-
dinate a, when the effective buth 1 1 equilibrium, but sull

N

= — 121 C; (Xl - f,) N (7)

=

q=q*
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coupled 1o the reaction coordinate with a fixed value of g*.
It has béen frequently argued that the influence of most
realistic environiments on rate processes can be modeled by
choosing an effective-set of harmonic bath- oscillators with
. an appropriate spectral density [15].

The path integration in Eq. (3) can be simplified by first
“integrating out” the bath coordinates in the usual way

[3,15,17] to give the expression for the centroid density

0* = Quunf+J Da(x) 3(g* — Go) exp{—~Sua[a @], ()
where Qpan is the partition function for the bath in the ab-

sence of coupling to the reaction coordinate, and the effec-
tive path integral action functional S.z[q(z)] is given by.

Y]
Salatl) = | e {2 46+ Ko tatol}
v L2 ©)
b o0
= Jdr | dva(r-7De@q@).
0 -0
In Eq. (9), the potential ¥, (q) is the modified potential

q)+Z

Vel@) = 4, (10)

-l 2m w2

and a(jz]) is the kernel of the imaginary tirie influence func-
tional [3,15,17], given by

a(le) = 5= | dwJ@) exp(=olel). (11

The spectral density of the bath J{w) in Eq. (11) is given
explicitly in the linear model [Eq. (6)] by the expression
[15]

Joy =% 4 12
(w)*71=1 mw; S~ w). (12

At this point, the problem of computing the quantum ac-
tivation factor in Eq. (1) via the centroid density [Eq. (3)]
has been greatly simplified by the linear response approxi-
mation for the bath. However, the exact analytic evaluation
of the effective path integral in Eq. (8) remains a daunting
task for a realistic reaction coordinate potential ¥;[q(t)]. It
is therefore advantageous from a computational, as well as
conceptual, point of view to employ a variational theory.
Such a theory is possible because of the rigorous inequality
for the centroid density [1,18]
0* 2 O exp(—<ASHE/h), (13)
where Qf is the centroid density for some reference action
S, AS is the difference between the actual and reference
actions, and {--->§ denotes path integral averaging in the
reference system with the path centroids constrained to be
at g*. A variational theory for the reference system may then
be defined by uptimizing the parameters of the reference

potential to maximize the right-hand-side of Eq. (13). There-
fore, the challenge in such as theory is to pick an accurate
and conceptually useful reference action. (For one possible
approach, see Ref. [1]).

A very simple approach is to first simplify the inequality
in Eq. (13) by invoking the linear response approximation
for the bath [cf. Eqs. (8)—(12)] and to then-employ the
effective reference action

hp
Sanlatl= | as{ a6 + o= Tmadla-g'P). (4

The potential of mean force in the reference action is taken
to be simple parabolic barrier with a variationally adjustable
parameter &F (i.e., the square of the unstable barrier fre-
quency), It is important to note that in this simple reference
action there is no influence functional [Eqs. {9) and (11)] so

‘that both the nonlinearity of the reaction coordinate poten-

tial ¥;[¢(z)] and the influence of the linear dissipation are
treated in Eq. (14) by the single variational parameter 3.
The evaluation of the inequality-in Eq. (13) and the sub-
sequent derivation of the variational equation for @; is fa-
cilitated by first re-expressing the reaction coordinate po-
tential ¥,[q(z)] in terms of its Fourier transform V,(k):

WLo@] = 5 | dk 0 explikg(]. (15

The average <ASH§ in Eq. (13) is now readily accomplished
by Fourier path integration [1,3,5] wherein the quantum
paths q(z) are represented by

o0

q@) = "_z_:_oo Guexp(iit);  Jon=4qr, (16)
and Q, equals 2rn/hf. The result of this path integration

for Q¢ exp(—(ASHS/h) is
QF exp(—<ASH/h) = (m2nh? B)'2 Qan

(hpy/2) .
" Sn(panf2) expL— B Veu(@s, 4],

(17)

where the effective potential Fg(@,,q*) is given by

_ 1 T 2
V(@ 1) = = | dq¥ilg+q9)exp(—¢*/2A¢%)
/2nAq* ~ 18)
§ Q1 (Q.)/m + &}
n=t B —-@p)
The width factor Aq® in Eq. (18) is also dependent on @}
and is given by

2 €L
o =g & e "
The other important yuantity in Eg. (18) is  (¢) which s the
Luaplace transform of the Jussicul autocurrelation function
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-of the-énvironmental-force fluctuations 3F.(f). on the re-

action- coordinate at the transition state. The transform:in
this:case is'evaluated.at z = Q, and is explicitly:-given by

p I :dt e (8 Fo (t) 8Fut (00

where ().« denotes classical Boltzmann averaging over
bath-variables which are equilibrated with the reaction co-
ordinate fixed at g*.

The optimal variational parameter @} for use in Eq. (17)
is obtained by maximizing the nght-hand-sxde of Eq. (13)
with respect to- @2 The resultiiig transcendental equation is

(@)
net (QF — B3 1

MG = — —— -
’ J /2nAq?

n§l (Q,% - Cl-)h)z

21
[re)
-_Iw dg¥; (g + q%)exp(—q4/2A4%),

where V/{-+*) denotes the second derivative of the nonlinear
potential of mean force along the reaction coordinate. The
above equation can be efficiently solved by an iterative pro-
cedure on a computer, It is also important to note that the
classical friction and the potential of mean force along the
reaction coordinate are the only quantities required to solve
Eq. (21) and hence to estimate the quantum rate constant
from Eqg. (1). In general, a positive classical friction leads to
alower effective barrier frequency in Eq. (21) than one would
obtain in the absence of friction. Stated differently, tunneling
dynamics in the presence of dissipation is equivalent in the
present theory to the simple tunneling of a particle through
a broader potential barrier.

For many realistic physical situations (e.g., mtramolecular
proton transfer in polar solvents), the timescale ¢y of the
classical friction n(f) is considerably longer than the time-
scale for the quantum particle along the reaction coordinate.
In this case, a considerable simplification of Eqs. (18) and
(21) results, This simplification arises due to the limiting
expression.

Qii(Q) = 2 Id:e-"- ,,(:) Q:;O)fdte“’~

=1(0),

where 5(0) is the value of the classical friction at ¢t = 0.
Eq. (18) then simplifies to

(22)

cﬂ(wb»q )

V—E—i-—A—z J daliila+aY

~ V(g +q9Ad 2] exp(—q*/2A4%).

(23)

Additionally, the transcendental equation for the variational
parameter 2 simplifies to

(20)

1
V/2rAq?

o
- § gV (g +qMexp(—g*/2A4).
-0

m@} = —n(0)—

1,00

(24) |

The utility of the latter equations lies in the fact that only
classical equilibrium properties are required for ‘the evalu-
ation of the quantum rate constunt, -

The accuracy of these variational equations may be tested
on a model problem of an infinite harmonic bath [cf. Eq.
{6)] coupled to a reaction coordinate-with an Eckart barrier
potential [19]. The bath in this model is characterized by a
classical friction of the form
n(®) = n(0) exp(—t/ta) , 25)
where the timescale of the classical friction ¢, equals 4wgy.
(Here, wy is roughly the timescale for a classical particle
to fall off of the Eckart barrier in the absence of coupling
to the bath). The quantity which was calculated is the ratio
of the quantum to classical activation factors, given by
I, =e~ffije=ft (26)
where ¥V, is the height of the potential barrier at the tran-
sition state (g = ¢*). This ratio was determined for various
values of 5(0) (shown in fractions of mwdg). In Fig. 1, the
results for I', are plotted from a full path integral Monte
Carlo calculation of Eq. (2) with the exact action in Eq. (9)
(open squares), from the rigorous variational equations

lSl,

0.0 0.5 1.0

Fig. 1

Results for I, [Eq. (26)] for an Eckart barrier coupled to the bath
with a classical friction given by Eq. (25). The open squares are
obtained from a full path integral Monte Carlo calculation of
Eq. (2) with the exact action in Eq. (9), the solid line is from the
rigorous variational equations given in Eqs. (17)—(19), and the
dashed line is from the limiting theory based on Eq. (17) with the
approximate equations in Eqs. (23) and (24). The height of the
Eckart barrier is 2000 cm~!, and the magnitude of the classical
unstable barner frequency 1s 1047 um . The temperature in the
calculation was 188 K
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given.in Eqgs. (17)=(19) (solid line), and from the' limiting
.theory based on Eq. (17) with the approximate equations in

Egs.. (23) and-(24) (dashed line). The two sets of variational.

results-are clearly in-good agreement with the exact Monte
‘Carlo calculation of-thie quantum activation factor. It is also
interesting to note that the disagreement between the exact
and varia.ional results diminishes rapidly with increasing
strength of the friction.

1L Variational Theory for the Dynamical Correction
Factor »

Although the basic form of the equation for the rate con-
stant in terms of a path integral centroid density has been
established [Eq. (1)], an exact analytic solution for the gen-
eral quantum transmission coefficient x has not yet been
obtained, An accurate desription of « is, however, desirable
because -that factor contains additional multidimensional
dynamical and tunneling effects which are not already in-
cluded in the ceatroid density Q* [1,9].

The exact quantum mechanical expression for the trans-
mission coefficient is given by [1]

K = (2ump)'? I dg == 2

2 o* (27)

v(g),

where Q.(q) is the centroid density [Eq. (3)] at a general
position g along the reaction coordinate, Q* equals Q.(¢¥),
and v(g) is given by the quantum dynamical expression [1]

V@) =7 plm Jdq'Jda"halg)nla")g'le="" 1"

{q'le™ 4 hye=" A 9> /Q(g).

(28)

Here, Iy (-++) [ha(---)] is the population operator for the re-
actant (product), and the imaginary time path integral [3,5]
for {q’le~"|q") has the centroids of its quantum paths
constrained to be at a position ¢ along the reactiou coor-
dinate. For notational simplicity, Eq. (28) has been written
in terms of the reaction coordinate only, but inclusion of
the bath modes is straightforward. Eq. (28) can also be writ-
ten in a cyclic path integral form as 1]

ImI Dq,(®){ Day(t)§ D (1)

*8(oa — @) hal42(0)] hs [4.(RP)]
“hg [gs(AD)]e™ {S g, () =iS fgp ) +iS,{q.(N}/h 10:(0),

v(g) =

29)

where the S,[--T's denote real time actions [3b], and the
limits on the path integrations are

&) = 10), @AY = q.0), ¢.(A) =4.0) (30
which are also integrated over. In principle, Ey. (27) facili-
tates the exact determination of the transmission coefficient
from a real time quantum dynamics calculation [8]. With-

out such an efficient reactive sampling procedure, a “brute
force” dynamics calculation for. realistic problems would be
enormously time consuming and essentially impossible.
(Even with the above procedure, a quantum reactive dy-
namics calculation may still be very computationally de-
manding!)

As a complementary approach, it is clearly desirable to
have simplified theories to estimate the value of x as well as
to provide some physical insight. Theories of this sort are,
for example, in the same spirit as the Kramers [4] and
Grote-Hynes [4,14] corrections to classical TST. In order
to proceed in an analogous fashion to the latter authors, a
model for the dynamics may be employed in the evaluation
of Eq. (27). For example, the simple choice of free particle
dynamics yields the result ¥ = 1 (i.e,, a quantum TST ap-
proximation), while if a multidimensional parabolic model
is employed one obtains the result ¥ = kgy (i.e., the Grote-
Hynes correction) which accounts for the coupling between
a parabolic reaction coordinate and a linearly responding
bath. In the latter theory, the transmission coefficient has
the well known form [14]

A w3}
Kou = ——; A

wp TN G m G
where 1j(4¢") is given from Eq. (20), and w, is the magnitude
of the parabolic reaction coordinate barrier frequency.

The utility of the parabolic model is derived in part from
the fact that the exact dynamical result for the correspond-
ing rate constant [10] can also be obtained directly by sta-
tistical mechanical methods. The central feature of the latter
analysis is a coordinate transformation to a separable set of
normal modes [11,12]. In that procedure, the potential
energy function for the fully parabolic model, given by
Eq. (6) for ¥« (q,x) and

Vo~ - mod(a = ")

Vilg) ~ 5

(32)

for the reaction coordinate, is first transfuimed into the sep-
arable form [11,12]

”"+(Vo——1“ °)+Z (p,,+ﬂ;y,), (33)

where g is the unstable normal mode with a squared imag-
inary frequency — g2 and the y,’s are the uncoupled stable
normal modes with frequencies 4;. For this multidimensional
quadratic Hamiltonian, it is immediately obvious that one
should choose the unstable mode ¢ as the true multidimen-
sional reaction coordinate since no recrossings of a transition
state at y = ¢* are possible and transition state theory is
therefore exact [11,12]. This choice of reaction coordinate
is to be contrasted with that of the “bare™ reaction coordi-
nate 4 (which is ubviously the correct choice 1n the absence
of any coupling to a bath).
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Thé exact quantum rate constant for multidimensional
‘parabolic model-may then be expressed.as [9]

k=L o, (4
hQa

where the quantum-activation free.energy is given in terms
of a centroid density by

= —ks T In[Q*/(1/2n1* B)'"] . (35)
In Eq. (35), 0* denotes the centroid denisity in mass scaled
coordinates with the centroids of the true multidimensional
reaction coordinate paths ¢(r) constrained to be at their
transition state value ¢*. In other words, the centroid con-
straint is now on the true multidimensional reaction coor-
dinate g rather than on the bare reaction coordinate q as in
Eqgs. (1)=(3).

On the other hand, for the parabolic model it is possible
to derive a simple relationship between the quantum acti-
vation factor along ¢ (at ¢ = ¢*) and the activation factor
along g(at ¢ = ¢™). This relationship is [9]
exp(—BF*) = (46" /wy) exp(—PEY) . (36)
Thus, for-the parabolic barrier/harmonic bath model, a cal-
culation of the centroid density at the transition state of the
simple reaction coordinate ¢ is equivalent to a calculation
of the centroid density at the transition state of the true
multidimensional reaction coordinate g provided the former
result is multiplied by the correction factor Agf fwy, [9]. This
-perspective defines the transmission coefficient as the cor-
rection factor one must include in the calculation to com-
pensate for being in the wrong transition state [9,11,12].

The perspective on the transmission coefficient outlined
above can also be exploited to develop a theory for x in
systems having a noniinear reaction coordinate potential
[9]. In particular, the result in Eq. (36) may be combined
with the variational principle for exp(— BF¥) based on the
inequality in Eq. (13). The actual variational methodology
in this case, however, differs somewhat from that discussed

in Sec. II. Specifically, a reference action is now employed
in the form [9]

. b Mmoo, 1 ., 2
Saslall = | o {240+ Kom 3 makita— ')
W w (37
= Jdc | dvoge-vna@ae),

where the linear dissipation of the bath is now explicitly
included, and there is a new variational parameter &2,
(which generally differs in value from @j; in Sec. 10). In Eq.
(37), the variational parameter specifically treats the anhar-
monicity of the actual potential of mean forve along the
direction, while the influence of the bath oscillators 15 de-
scribed explicitly through (]t - ¢'}) [cf. Eqs. (11) and (12)].

The optu..ization of the right-hand-side of Eq. (13) for the
reference system in Eq. (37) can be performed explicitly [9]
and yields the transcendeatal equation for @Z:

1
l,/zm 2

meg, = — f da¥(g+g7)exp(— —~¢2Ag}), -(38)

where /() is the second-derivative of the potential of
mean force along the reaction coordinate, and the width
factor Ag, is given in this case:-by

fecd
2. 2.y 1
Brmnst QF — gy + Qi(Q)m

Aqt (39)

Note here that, as in Sec. II, (R2,) is given by the classical

expression [Eq. (20)] evaluated at z = Q,. Therefore, for a

realistic problem one might employ classical molecular dy-
namics to evaluate Eq. (39) as input to the transcendental
equation for &4,y [Eq. (38)].

After a determination of @}, for the.realistic reaction co-
ordinate potential, one may then employ the relationship in
Eq. (36) to relate the variational/parabolic activation factor
along ¢ to the activation factor along the more realistic
variational/parabolic estimate of the multidimensional re-
action coordinate p. The resulting expressions are [9]:

O)M

Cxpl= PR = pexp (PR T = g

(40)

The quantum transmission coefficient in Eq. (1) which is
appropriate for nonlinear barrier potentials is therefore
given by [9]
K = 25 [y, 41)
The transcendental equation in Eq. (40) -which defines 2
clearly has the same from as the classical Grote-Hynes result
[Eq. (31)]. However, because the cffective barrier frequency
by, is optimized through Eq. (38) to characterize a nonlinear
barrier potential of mean force, it generally decreases with
decreasing temperature in order to capture the anharmonic
nature of the potential and the quantum tunneling motion.
Thus, for nonlinear barriers at lower temperatures there is
effectively a lower variational barrier frequency @,, than at
higher temperatures. According to the powerful insight pro-
vided by the Grote-Hynes relationship [Eq. (31)] [14], a
system having a barrier with a low frequency (or curvature)
“feels” the entire spectrum of the bath fluctuations much
more than one with a higher frequency (or sharper) barrier
As a results, the factor ¥ = 1§ /@, in the quantum rate
equation [Eq. (1)] should be less than the classical Grote-
Hynes value kgy = 2¢F/wp [9].

An example of the temperature dependence of the quan-
tum A in Eq. (41) is shown in Fig. 2 for the same Eckart
barrier, infinite harmonic bath system described at the end
uf Sec. 11. The sulid inie is the “quantum Grote-Hynes™ result
caleulated from Egs. (38) - (41), while the dashed line is the
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staidard classical Grote-Hynes result [Eqs. (31)): The quan-
tum result begins to deviate significantly from the classical
theory at the lower temperatures. Research is in progress in
our laboratory to determine rather the small amount of
additional tunneling not already included in the centroid
density [Eq. (3)] would contribute significantly to the value
of the quantum « at low temperature [1]. Such additional
tunneling is expected to add a multiplicative factor'Eq. (41)
which is slightly larger than unity at low-T, but it.is unclear
whether that factor will qualitatively alter the behavior of
the quantum result in Fig. 2,
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Fig. 2 T®)

Results for the quantum transmission cocfficient x as a function of
temperature for the Eckart barrier/infinite harmonic bath system
employed in the calculations for Fig. 1. The solid line is the “quan-
tum Grote-Hynes” result calculated from Eqgs. (38)—(41), while the
dashed line is the standard classical Grote-Hynes result [Eq. (31))

800

1V. Concluding Remarks

In the present paper, two aspects of the quantum rate
constant expression given in Eq. (1) have been explored. In
Sec. 11 a simple, but quite accurate, variational theory for
the quantum activation factor was discussed that maps the
nonlinearity of the reaction coordinate barrier and the linear
dissipation of a Gaussian fluctuating bath into a separable
parabolic reference action. A much simplified form of the
variational equations was also presented which is valid for
cases in which the correlation time of the classical friction
is fong compared to the timescale for the motion of the
quantum particle along the reaction coordinate. In Sec. 111,
another variational approach was discussed which is the
basis for a theory of the dynamical correction factor & in
Eq. (1). The resulting quantum expression for x was shown
to deviate significantly from the classical result at low tem-
peratures. A number of studies of quantum activated rate
problems based on Eq. (1) are presently underway, and the
results of those studies will be reported in future
publications.

G.A.V.is arecipient of a Camille and Henry Dreyfus Foundation
New Faculty Award (1989 —1994).
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The Feynman<Vernoii, Caldeira-Leggett model for a quantum dissipative system is used, via a general
kinetic equation duc to Chow, Browne, and the prescnt author, to cast light on the classical limit of
-quantum Brownian motion, with special attention paid to the requirement.of coarse graining in time.

L Introduction

In §:2 of Kramers® classic paper [1], which we are here
to celebrate, he discusses the conditions under which simple
equations govern the diffusion of a classical Brownian par-
ticle, Central to his thinking is the existence of a “range of
time intervals 7 which has the following properties: On the
one hand 7 must be so short, that the change of velocity
suffered in the course of T may be considered as very small;
on:the other hand t'must be so large that the chance for X
[the “irregular force™] to take a given valuc at the time ¢ + ¢
is independent of the value which X possessed at the
time ¢.”

In this contribution I discuss how this requirement
emerges in the classical limit of a model of quantum Brown-
ian motion, for which a completely-general quantum kinetic
equation formulation was. given some years ago [2,3]. The
derivation does not make the assumption that the system is
weakly damped.

In a certain sense,.what follows is an exercise in futility:
the model used is known to lead in the appropriate limit to
the classical Langevin equation [4] which is Kramers’ start-
ing point. On the other hand, the passage to the classical
limit via the kinetic equation shows that this equation, which
contains memory effects, itself signals the scale on which
coarse graining in time is needed if a simple Markoff equa-
tion is to be valid, and it is instructive to see how what has
to happen does in fact happen.

It is also interesting to note that this procedure cures a
“positivity problem,” pointed out to me by P. Pechukas [5],
thereby casting light on the extensive literature on the so-
called Dynamical Semi-groups [6].

1. Procedure
IL1, Kinetic Equation

Consider the Feyrman-Vernon [7], Calderia-Leggett [8]
model for dissipative quantum mechanics. This is a “system”
plus “environment” scheme, in which the environment is a
large number of harmonic oscillators equilibrated by fiat in
the distant past. The Hamiltonian is

*) On sabbaucal teave from. Laboratory for Atomic & Solid State
Physics, Cornell University, Ithava, NY, 14853-2501, USA.

Ber. Bunsenges. Phys. Chem. 95 (1991, ©o. 3

U} CH 1erlugsyesellschaft n.bH, 15 -0940 W cunheun, 1991

P
H=——+ V(g
2m (IL1)

A T 2( _Cﬁ_)z]
+Zt[2m, 7 M\ mo?/ |’

To keep the'length of the present article reasonable, it will
be necessary to refer to Refl [2], in which the notation, with
rare exceptions, is identical, There, the thermodynamic field
theory for this model was set up. A crucial point is that the
time-relaxed reduced density matrix for the system described
by the variables p, q is the object for which a formal integro-
differential equation is always valid. This quantity is defined
by the equation

G(tit2) = Tew[U(ty, —0) o(=00) U'(tzy =c0)]  (I12)
where the trace is over the environment variables, U(t, — o0)
is the time evolution operator corresponding to the full
Hamiltonian (IL.1), and o(— o0} is the initial density matrix
for the system and bath in the distant past, when the oscil-
lators are assumed to be in equilibrium. The reduced dezsity
matrix for the system is G (1, 1), i.¢. at equal times, which we
shall call 4(¢). This is the quantity (like G a matrix in the
Hilbert space of the system) which most kinetic theories deal
with. While it is true that averages of dynamical variables
of the system can be calculated once § is known, the time
evolution of ¢ need not be, and in fact is not, simple on all
time scales. On the other hand, the general principles of
statistical quantum field theory lead to the following kinetic
equation for G:

i+ ) Gt  [Ho + Reo, 6]
3, o, 113)
— [6,Reg] = %{A,&} - >{r.6}.

There are many symbols needing definitton here, of which
the simplest is Hy, the system Hamiltonian (p*/2m) + V{(q).
Before getting involved in all the other definitions, it may
be useful to step back and observe that {1i.3) has a standard
form for a kinetic equation, with the left hand side describing
the drift of excitations, and the right hand side collisions
[“scattering in™ and “scattering out™] between excitations.

00Y3-9021,91,0303-04U0 $ 3.50 +.25,0
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The complication is that, as in any field theory, the left side
includes enérgy shifts which modify the excitations of the
uncoupled system, and the right side describes the scattering
of these true excitations. At a formal level, there is no way
of avoiding the fact that these renormalizations-involve in-
finite order perturbation theory, which can--however be
tucked into “self-energy” operators.

Now, for the definitions. There are two auxiliary propa-~
gators which enter the time evolution of the two sides of

e(~):
G'(t1,t2) = —i0(t; —t2) TrpLU(t1, 1) 0™
G*(t1,2) = i0(t2—t1) Trg[U(ts,12) 0%™].

(11.4)

Corresponding to each of the propagators G, G', G* are self
energy operators, These are defined by

G" (1, t) = G§*(ty.ty)

w0 o0
+ § 46§ diGE . 6) 0 (6, 13) G (13, 1)
-0 -

15
Gt 1) = G'(1, —00) G(—0) G*(—c0,1) ()

o0 €x
+ § di § A6, 6(6,15) GA ().
- -

Products on the right of (IL.5) and (11.3) are matrix products
in the function space of the system, and folded time integrals,
as in (I1.5), are implied in (11.3}. From their definitions (11:4),
one sees that G* and G* are not independent; the kinetic
equation (I1.3), obtained by applying time derivatives to the
left and right of (IL.5), has been rewritten by introducing G
i
2
in (I1.3) denote commutators and the curly brackets anti-
commutators.

The preceding may seem unnecessarily formal. However,
this is the nature of quantum kinetic equations; (11.3) is noth-
ing more or less than the Keldysh [9], or equivalently the
Baym-Kadanoff [10], scheme applied to the present prob-
lem, in which the “system” consists of one particle. The basic
point is that “forward” and “backward” time evolution is
needed for statistical operators.

The equilibrating nature of the oscillator heat bath is con-
tained in the environment propagator

= Reg F %'A and ¢"* = Reo F — I, The square brackets

a(tt) = ¥ C Tra[xi() xi(t) 0™
: (1.6)

= T dTwJ(w) [1 + n{w)] e~iwe~",

In the last line n(w) = 1/[exp(fw)— 1], and J(w) has been
defined via

dw—wy), aLmn

ct
J(w) - nzﬁ 2”1,'

(3

Caldeira and Leggett [8], and Leggett [11] have emphasized
the fact that details of dissipative mechanisms can be sim-

ulated by an appropriate choice of J(w). In particulat, a
friction force linear in the velocity — often called Ohmic
dissipation, — to which we restrict oursclves from now on,
corresponds to J(w) = mywO(w, —|w|) where my is the
classicai coefficient of friction. Here for the first time appears

-an upper frequency cut-off, w,. Its reciprocal is the classical

correlation time of the environment, which plays the role
here of the duration of a collision, and will be important in
what follows,

1t is worth nothing already that when ¢, is set equal to ¢,,

in the first term of (IL.3), thereby constructing %é(t,), the
1

remaining terms cannot be written as M {g(¢;)} where M is
a map only in the space of Hy. Thus (I1.3) does not lead to
an equation of the form studied in Ref. [6]. This feature
persists, as well shall see, in the classical limit.

I1.2. Classical Limit and The Generalized Born
Approximation

Eq. (11.3) nceds to be supplemented by equations relating
the self-energics back to G, G* and G* to make a closed
system. At this point, uncontrolled approximations are hard
to avoid except in the case of extremely weak damping,
However, in the classical limit, T’ > hw, (T-temperature in
the cnergy units also favored by Kramers [12]), onc can
argue that, if the inequality ;' < y~' is satisfied, correc-
tions to a very simple closure are small. The argument is
given in the appendix. The following scheme, called the gen-
eralized Born approximation in Ref. [2], is then valid:

0"ty t2) = alty ~ 12) qG™ (ty, 1) g + 6(t; = 1)

¢ dw 2
f—J(w)q

i (11.8)

(0 1)) = alty— ) qG(t1.12) q .

It may be useful to emphasize that this is not second order
periubation theory because the self-consistent G** and G
occur on the right. The approximation corresponds to the
neglect of vertex corrections and is similar to what is called
“Migdal’s theorem” in the problem of the clectron-phonon
interaction in metals [13]. Within this approximation, it is
straigth forward to work out the kinetic equation. First, note
that for T > haw, the Bose factor [1 + n(w)] in (11.6) may
be approximated by (T/hw) + (1/2). Then for Ohmic dissi-
pation one sees that

alty—t2) = 2myTo.(t; — ty) (119)

. 0
+ lm?%{;‘““ —1).

Where . is a d-function spread out on a time scale w;'.
For the steps that follow, it is convenient to write (I1.3) in
the equivalent form

i(—a—— + a—?-)fi—[Ho.G] =¢'G-Go*+6G*-GG.
2

oy
(11.10)
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Look.at the first term-on the-right of (I1.10). Using.(IL9),
(I1.8), and (I1.4) we have

G = —i2myT-%-q2@(t, t2)
) 4 0 .
imy [ di [? 36~ a66Da6@) @1n
H

- W, A

+ [ dtmyé(u —)—= ¢’ GG 1)

In doing a partial - integration in the $econd term, it is im-
portant to recognize that G* has a sharp step function in
time. Then, identifying 6.(0) with (w./n), a cancellation oc-
curs and one obtains

[0*G] (1 13) = —imyTq*G(tn 1)

imy 4
. 2_{4 r Gt t)aGlut) o

., 0
- ig* =— 5 G(tl,tz)},,'_"_o.

The reduced density matrix ¢ is constructed on the left of
(I1.10) by setting t; = t,. Note, again, that on the right side
of (I1.12) the time derivatives do not enter symmetrically, as
on the left. From the definition of G"and G, (11.4) and (IL2),
one identifies

2 e
7 G0 tlimmo = TralHel") (13

and

S 60t = ~i Tra[Ho()] (114
where o(ty) is the full density matrix of system and bath
evolved to time ¢;. In a similar way, one can work out all
the terms on the right of (11.10). Further algebra will not be
given here. A perhaps useful hint for someone who wishes
to check it is that the answer has been tidied up by noting
that the only part of H, given in (11.1), that does not com-
mute with the system coordinate g is (p*/2m), and that the
commutator of this term can be worked out explicitly as
needed. Finally, one obtains

00 my T

._._—__ H' , (4,
o [ 0,01 - —5—[q.[9.0]] (1L15)

i (a1 4 8
— i e {p.o}]1 +C

where

a

¢ = ”"7 —L (P HDs0(0)~ Trs[He()])

+ (@) Hys—Tra[e(H]) ¢
+ q(Trs[e(H] - 6(t) <HDp)q
+ q(Trs[Ho(®] - <HDpé(0)q} -

(I1.16)

In the last equation (H)s = Tra[Ho&™]. With the excep-
tion of the term C, Eq. (IL.15) is an equation that may be
familiar to some readers. It has the feature that in the Wigner
representation [14,15] it looks exactly like the classical Fok-
ker-Planck equation. It would have been surprising if this
equation could have been derived without further approx-
imiation, since the existence of-the “range of time intervals”
mentioned by Kramers has nowhere been used. In the next
section we examine the physics contained in Eq. (11.16).

IL3, Physics of the New Terms

‘Eqs. (11.15) and (IL1.16) are the central results of this paper.
To the best of my knowledge, the terms called C have not
been previously captured in a form as general as here given,
It will be instructive to examine these terms — which evi-
dently describe energy transfers between system and bath
— more generally,

Note, first, that all parts of the Hamiltonian (IL1) involv-
ing only the system variables g,p, drop out of (11.16). Call
the remainder H’. Evidently

2
H = Z‘ (p_, + —i—nnwﬁq?) - 2': Ciqiq. (11.17)

2my

Consider the contribution of H' to the second term in the
bracket of (I1.16). This can be written as a double functional
integral.

Tra[H'0(0] = § D¢’ D’ @) e~
Trg {H'[q' (N U'([g'),1, —0)
et U'([9"), — o0, 1)} 05 (—c0)

(I1.18)

where Sy(q) is the classical action associated with Hy, and
the U"s are time evolution operators corresponding to H’
for the Feynman paths ¢’ and ¢”. Now the trace in curly
brackets on the right of (11.18), called {(H’) below, can be
explicitly evaluated, the calculation being only slightly more
complicated than that for the Feynman-Vernon influence
functional, and 1 have worked it out in general. However,
in the classical limit it suffices to assume that the forward,
q, and backward, ¢”, paths are identical. Then, the general
result simplifies to a form, the time derivative of which can
be obtained directly in the following way:

=30 = -2 40

Ldu
. [jm-;smw, (t—u) C.-q(u)] (1119)

We dw H .
=—-my § g § dusinw(t—u)gHq@)
-0

=myg*(t).

In (11.19) the response of the oscillator i to the classical force
C,q(t) has been used to eliminate q,(t). This equation shows
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that € in (I1.15) describes aperiodic energy transfers — and
an associated loss of. quantum.coherence — between the
‘Brownian particle-and its environment due to collisions.

L, Results
1IL1. Positivity.Disease and its Cure

When C is neglected, Eq. (IL.15) suffers from a diseasc that was
pointed out to me by P. Pechukas [5]. Here, I summarize his
formulation of the problem and show how it is cured by the new
terms,

Since § is a density matrix it must obey {p]é|yp) = 0 for any
system state |p). Suppose that at ¢ = 0 §(0) describes a pure state,
i.e. let §(0) = @D {¢|. Let the wavéfunction ¢(g) be even in g and
choose !p(q) = d¢/dq. Evidently, (lplQ(O)llp) = 0. Now consider
the average in Jp) of the time derivative of g at ¢ = 0. From (I.15),
ignoring C, it follows that

WL |-p>| —-v(quw(q)qu(q))

-(I dq,,,(q)%m) (L)

Z"'TY L dqpqer.

Now, the first bracket on the right of (I11.1) is negative and can be
made as negative as one wishes by choosing ¢(g) to be more and
more peaked around ¢ = 0. This means that the rlght hand side
of (IIL.1) can be made ncgauve, so that at a small positive time ¢
violates the positivity requirement.

It is instructive to make the criterion for positivity violation more
quantitive, Choose ¢(q) to be a Gaussian centercd at the origin
with width I, Then, the criterion for (IIL.1) to change sign is seen
to be

P h?

amT (2
i.e. that the initial state be concentrated within a thermal de Broglic
wavelength,

The analysis in (I1.3) immediately provides a cure for this prob-
lem, along the lines suggested in the quotation from Kramers with
which the present paper opened: “coarse-graining” in time over a
few collisions. We have required that o7}, the duration of collision,
be much less than y=!, the relaxation time. Let At = Kowg™!' with
K a moderatcly large number but such that yAt < 1. Then since
quantum coherence will, via , be totally lost on the time scale Az,
an uncontrollable mdcﬁmtencss in the energy, momentum, and po-
sition of the Brownian particle will ensue. The uncertainty in mo-
mentum is given by Ap & |/2mh/At. Correspondingly, the uncer-
tainty in x obeys

2
Ax ~ ,hAt > ’ h > ’_L
m me, mT

When (I1.15)is coarse gramed on the time scale At, the terms in ¢
will average to zero via (IL.19). This, as (H1.3) shows, has as a
corollary the condition that € can only be neglected in (I1.15) when
lengths on the scale of the positivity discase are forbidden.

(1113)

111.2. Concluding Remarks

In this brief article, I have attempted to show that an tho passage
to the classical hmit of quantum dissipation, as in the purely clas-

sical treatment of dissipation, times corresponding to the duration
of several collisions must be averaged over before a-simple theo-
retical scheme emerges. Since this is obvious from a physical point
of view,.a natural question is: has a sledgehammer been used to
crack a peanut? Yes, but the following is new, to the best of my
knowledge, about the exercise as here presented:

(i) Weak dissipation, in the sense of-the relaxation time of the
system being long compared to its characteristic frequencies,
has nowhere been assumed.

ii) The general kinetic equation, containing all memory effects and
renormalizations due to coupling with the environment, has
been shown to contain the requirement of coarse graining. Unless
some such procedure is followed, the equation remembers the
stochastic transfer of energy between system and environment,

The weak damping limit of the problem has been previously
treated in an explicitly quantum mechanical way [3,16]. In partic-
ulfar, in Ref, [3], the resulting Redficld equations [17] were shown,
in the classical limit to lead to Kramers' low damping, i.c. energy
diffusion, limit of the Fokker-Planck cquation. By contrast, Eq.
(I1.15) when coarse grained gives the full Fokker-Planck cquation
which is the basis for §3 and the rest of Kramers' paper.

For arbitrary damping, the implementation in rcal, as opposcd
to imaginary, time of the kind of quantum mechanical scheme used
here remains a largely open. question.

Dana A. Browne suggested that the generalized Born approxi-
mation might capture all of the relevant physics in the classical
limit, and the arguments of Scc. I1L1 are duc to Mark Oxborrow,
1 am very grateful to these kind souls for telling me how this work
should start and ¢nd, but they should not be held in any way
responsible for the intermediate steps.

It is a pleasure to thank the Alexander von Humboldt-Stiftung
for a. U. S. Scnior scientist award, and Albert Schmid for the hos-
pitality of his institute. I cxpress my gratitude to the organisers of
this meeting for their invitation. This work is supported in part
by the U.S. National Science Foundation under grant Nr. DMR-
88 15828,

Appendix

Here the ncglcct of Feynman graphs with overlapping environ-
ment propagators is justified when y < .. The connection between
pcrturbzmon theory and Feynman graphs in the present. context is
described in Appendix A of Ref. [2]. Consider first the contributions
to 6 of the graphs shown in Figs. 1(a) and 1(b). Call these the direct

(0); /_/_A—\_\
—a

Fig.

Dll’CCl (a), and Overlap (b) Feynman graphs for . The wavy lines
denote environment propagators, the solid lines directed to the left
(nght) G}?, and the lines With two opposed arrows G,
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and overlap graphs, respectively. Corresponding to 1(a) belongs the
contribution

oy o0
Ganaltnts) = § dt; § dtsqG§(t: ) qGolt:t:) 4Gt a)g
- -

(A1)
oty —t)a(ts— ),
whereas Fig 1(b) contributes
«w Q .
Garealtite) = [ dtz | dt;qG(t;12)qGol121:)4Ga(ts10)q
o = (A2)

ot =)oty — ).

The regions-of time integration in (A.1) and (A.2) are different. In
(A.1) one has strictly t; = &, t; < ty, and, through (IL9), ¢, = ¢,
ty & t;, where the symbol =2-means an approximate cquality con-
trolled by w;!. By contrast, in (A.2) one has the same strict ine-
qualmes, but &5 = fy, t3 = 4. The latter regnon of time mtcgrauon

is thus of order w;%, whereas the former is over a strip in the ¢, t;-

plane of width 5! and length the range of Goltst3). To estimate
the latter oné- has to rccogmze that in higher order G will be
replaced by G, whereupon it becomes clear that y~! is the relevant
time scale. It thus follows that

(A3)

A Y
Oovetlap A === Odirest «
We

The same reduction, whenever an overlap occurs, can be seen to
happen in an arbitrary order of perturbation theory.

For 6" and ¢* one may argue as follows. As shown in Appendix
A of Ref. [2], to preserve detailed balance, i.c. for the left and right
hand sides of the kinetic equation to vanish separately in equilib-
rium, topologically similar graphs for 6, o', and ¢* have to be
treated together. Thus, consistency requires that overlapping graphs
for 0" and ¢* also be dropped.
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Traversal time in tunneling has become a somewhat controversial subject, and this note presents a personal
perspective on some of these discussions. There is a widely invoked lincar relationship yielding dwell time
as a weighted average of traversal time and reflection time. I assert that it is totally without basis. Many
authors follow wave packets through barriers. The results of such calculations are hard to correlate with
experiment. Stevens has provided a wave packet approach which avoids some of the problems typically
faced by such analyses; nevertheless its analyllcal details are questioned. The sngmﬁcance of complex
traversal umcs, favored by some investigators, is questioned. The relative merit of various possible “clocks”
in the analysis of traversal time is discussed, but without definitive conclusions.

1. Introduction

How long does a particle tunneling through a barrier
interact with that barrier? This question was investigated
by MacColl [1], and on many occasions since then. The
work by Biittiker and Landauer [2] triggered a more inten-
sive and systematic concern with the question. For a number
of years following Ref. [2] the papers on the subject ex-
pressed a diversity of opinions, but generally some degree
of overlap with Ref [2]. More recently the spectrum of

Ber. Bunsenges. Phys. Chem. 95 1991, No. 3

& VCH 1 erlugsyesellschuft mbH, W -6940 B einheum, 1991

available views has widened, and experimental results have
appeared [3]. This is not a settled and mature field, there
are genuinely murky aspects and unsettled questions. Un-
fortunately, the highly visible controversies and the areas of
real difficulty have little relation, 1n my opinion. An example
of a real difficulty, which we wiil not take up in detail here,
was cited in Ref. {4]. There it was pointed out that the
approach of Ref. [2], applied to tunnching ia the midst of a
forbidden gap in 4 periodiv potential, leads to anomalously

UIUS-YU21,91,0303-0404 § 3.5 +.25,U
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large velocities. There are other physical-situations which
exhibit the same. problem, e.g. frustrated internal reflection

of electromagnetic waves.

This is.not asystematic review; rather it is. an informal
commentary. It .represents a personal viewpoint, and is
bound to appear controversial to some readers, Systematic
reviews have been provided by Hauge and Stevneng [5],
Biittiker [6], Jonson [7], and by Leavens and Aers [8]. We
refer the reader to these for a more extensive listing of the
literature. Some disagréement with Ref. [5] has already been
registered in response [9] to another publication by
Stayneng and Hauge [10]. Other disagreements with Refs.
{5] and'[10] were recorded in Ref. [6].

Ref. [2] invoked a time-dependent, sinusoidally modu-
lated, barrier potential with a very small modulation am-
plitude. If the modulation period is long compared to a
presumed traversal time then the tunneling particle will see
a barrier potential which-is characteristic of the time of
incidénce for the particle. If the modulation frequency is
increased sufficiently, the particle will no longer see a small
part of the cycle, and we can expect a serious deviation from
the adiabatic approximation valid at low modulation fre-
quencies. This change in behavior can be interpreted as an
time, tr. This traversal time is not the eigenvalue of a Her-
mitean operator, and is not necessarily a precisely measur-
able quantity, Indeed the traversal time of Ref. [2] may
represent an average over a distribution of possible times
[11,12], rather than a single crisp value, In complete ana-
logy to the traversal time for transmitted particles we can
also evaluate a time, 1y, for the barrier interaction of the
reflected particles [13]. Our approach to vy (and 1q) is in-
tended to answer: How long have the reflected (transmitted)
particles spent in the barrier? It is not necessarily an increase
in particle delay caused by the insertion of the barrier, when
measured far from the barrier (assuming, fo1 the moment,
that such measurements are possible). We return to that
particular question in Sec. 6.

The literature on this subject frequently invokes a dwell
time p, defined in a variety of ways. (See Refs. [2] and [13],
as well as the cited review papers for detailed discussion).
The simplest approach is to invoke a stationary state with
a time independent flux j incident on the barrier. The dwell
time is taken to be

1 T a
p =—.'£|1P'|dX,

11
; (1.1)

with the density of particles mntegrated over the extent B of
the barrier. p is, thus, the time required for the incident flux
to supply the integrated particle density under the barrier.
Consider a classical situation i which a particle stream 1s
incident on a region which can reflect or transmut carriers,
perhaps through a series of successive walls with holes, pos-

-sibly-oscillating or-rotating-ini-the directions perpendicular

to the incident beam. In that case j~! { odx with g the linear
B

parficle density, clearly represents the average time ;pcm
in B.

In a remarkable variation on-Eq. (1:1) Ref. [14] divides
by the transmitted current, rather than the incident currént,
to obtain a so-called “traversal time”.

2. Relation Between tp, 71 and 15
A widely invoked relationship is

7p = Ttr+ Ry, 21
with T and R representing, respectively, transmission and
reflection probability. This is the most widely accepted of
severdl viewpoints with which 1 take issue. It is a pivotal
point in.Ref. [5] leading to the conclusion there: “It is not
clear that a generally valid answer [to the traversal time
question] exists”. But Eq. (2.1) is also advocated in Ref. [7],
by Leavens and Aers [15,16], and by Leavens [17]. Re-
markably, Eq. (2.1) is treated by some of these investigators
as one which is immediately and conspicuously valid, and
needs no justification. I find this intensely puzzling. Of
course, we can always perfortn the averaging operation in-
dicated on the r.h.s, of Eq, (2.1). But it is then up to the
proponents of Eq. (2.1) to demonstrate that this averaging
does indeed yield the same quantity 7y, defined originally in
a totally different way, e.g. as in Eq, (1.1). Note that Eq, (1.1)
and Eq. (2.1) together yield

g |9l dx = jTtr+jR1g, 22

suggesting that the integrated density under the barrier con-
sists of two contributions, one associated with transmitted
particles and one associated with reflected particles. For a
classical beam with reflection and transmission probabilities,
as already invoked, that is sensible [18]. In quantum me-
chanics, however, we typically do not add particle densities,
but add wave functions. Thus, we can ask what is the wave
function which results in a beam going out to the right, with
nothing going out to the left. This will be a wave function
with particles incident from both sides of the barrier. We
can also find the wave function which only has particles
emerging from the barrier, all going to the left. These two
wave functions, added with suitable coefficients, do yield our
desired state, with particles incident from only one side. But
even these two additive wave functions do not correspond
to the situation that the proponents of Eq. (2.2) have in
mind. As stated these two superposed wave functions will
both have particles incident from both sides.

Biittiker [6], following a suggestion by Pippard [18], cal-
culated the diminution of transmitted particles in a barrier
which absorbs, i.e. has an imaginary component to the bar-
rier potential. The resulting reduction turns out to be pro-
portional to the dwell time, rather than the traversal time.
The physical interpretation for this result: The absorption
acts on all the particles in the barrier, they cannot — within
the barrier — be separated into a transmitted component
and a reflected component.

Leavens and Aers [15] do justify Ey. (2.1) in a supple-
mental way by a brief reference to Feynman and Hibbs [19],
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and’ this is-echoed by Jonson [7]. Ref. [15] asserts that
Eg. (2.1)
“... must-hold because a particle. incident on the barrier
is either transmitted or reflected (these are exclusive rather

than interfering alternatives in the language of Feynman
and Hibbs.)"

Now, if -we were to evaluate the average z-component of
spin, after encounter of a barrier, that reasoning would be
applicable. But if 7y, relates to the behavior in the barrier,

why are the possibilities “... exclusive rather than interfering
”9

3. Wave Packet Following

A number of investigators like to follow wave packets
through barriers and we cite only two recent efforts [20,21].
As stressed in Ref. [5], we can follow a peak, or else follow
a center of gravity. Biittiker and I have, in the past, argued
that incoming peaks do not, in any simple physical sense,
turn into outgoing peaks. Similarly for the center of gravity.

Are clectrons incident on a barrier necessarily in the form
of a wave packet? That, of course, depends on the electron
source. Electrons released by a shutter, externally controlled,
and open fora specified time, are wave packets. Electrons
coming out of a typical clectron reservoir [22], analogous
to a radiative black body, are not that clearly wave packets.
Ken Stevens, in correspondence, has argued that the time
between successive inelastic cvents in the reservoir acts much
like a shutter, These inclastic events are, however, not ex-
ternally timed. Wave packets require correlation between
nearby energics. Way inside a reservoir one should be able
to invoke ¢ ~ exp(—fiH), which exhibits no such correla-
tions. It is this view which allowed me to rederive the Ny-
quist theorem from the viewpoint which calculates conduc-
tance from the transmissive behavior of the sample [23].
On the other hand this is a difficult question, not necessarily
settled by the brief allusion to exp(—fH). It is really the
complete Hamiltonian, including coupling to phonons, that
must be invoked in exp(—f#H).. Furthermore exp(— fiH)
applies to a closed system, rather than to “way inside a
reservoir,”

The wave packet following papers, typically, provide a
mathematically correct analysis. It 1s not illegal to discuss
the trajectory of a peak befure it reaches the barrier, and
after it emerges. It is, however, up to the proponents of such
a calculation to demonstrate that this is a physically inter-
esting and sigmificant quantity, and relatable to experiment.
Let me indulge, here, in 4 somewhat exaggerated and playful
analogy. A theory can, perhaps, be generated describing the
length of time it takes to write the tunnecling Hamiltonian
on 4 blackboard. If done varefully, it may be a correct the-
ory. But it 15 up the proponents of such a theory to dem-
onstrate that this time 15 interesting. Furthermore, the pro-
ponents of this viewpuint have no basis arguing with the
authors of our other citations, because their answer differs.

It is incumbent upon those who follow wave packet peaks,
or wave packet centers of gravity, to tell us how tu relate
that to measurement. In that connection we stress the great

distinction between photons and electrons. In the case of
photons we can put a great many of them into the same
incident photon state. We can tap off a small portion of the
incident electromagnetic energy and make measurements on
it, leaving most of the photons undisturbed to go through
some interesting region. We can then do the same after the
photons have emerged from the special region of interest.
In the case of electrons, of course, we have at most one per
quantum state, Timing measurements, on an external clock,
are likely to be disruptive events [24]. It is possible, how-
ever, that experiments performed on many wave packets,
prepared in an identical fashion, can circumvent this prob-
fem,

Several recent papers have applied Bohm’s approach to
quantum mechanics to the study of traversal time
[17,25,26]. In this approach we follow an ensemble of par-
ticles, each following a classical path, The quantum me-
chanical phase of the wave function is given by the solution
of the corresponding Hamilton-Jacobi equation, much as in
the case of the WKB approximation. The wave function
magnitude is also determined by the spread or convergence
of nearby classical paths, again as in the WKB approxi-
mation. The classical path, however, is not that due to the
actual potential, but due to a potential which supplements
that by a “quantum potential”, which in turn depends on
the actual exact wave function. The classical nature of the
motion (but not in the original potential) then makes the
identification of time spent in a given region a trivial con-
ceptual problem. Ref. [25] demonstrates that for a wave
packet approaching a barrier, all the transmitted paths come
from the front of the wave packet, all the reflected paths
come from the tail. In my opinion that is not a physically
meaningful result,

An interesting approach to wave packet following has
been developed by Stevens [27 — 29]. It is a little less delicate
than the other wave packet discussions because it does not
require identification of a peak or center of gravity. Stevens’s
approach, however, has a more significant advantage. Many
authors (for an example, sce Sec. II B of Ref. [5]) discussing
wave packet propagation, apply the stationary phase ap-
proximation uncritically, even when the dependence of
transmitted amplitude on cnergy exhibits a strong exponen-
tial variation. Stevens’s work escapes that problem, the ex-
ponential behavior is taken very explicitly into account.
Stevens’s first results [27] preceded Ref. [2], and are in
agreement with it. Stevens's approach has been criticized by
Jauho and Jonsun [30], based on numerical calculations. |
will not try to evaluate the validity of that criticism. 1 do
discuss sume vther questions posed by Stevens’s work in the
Appendix. The critique of Ref. [27 297 has been relegated
tu an Appendis, because it is presented with less confidence
than our other material. Even if my oritique is valid, it is
pussible that a repaired analysis, along the lines uriginally
presented by Stevens, would yield his original results.

4, Can Traversal Time be Complex?

A good many papers in this field advocate 4 complex
traversal time, and we an cite unly o sampliag [11,31 35]
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(Note, however, that Ref. [35] was subsequently reinter-
preted, somewhat, by one of its authors [36]). It is clear that
‘there are a variety of reasonable analytical procedures which
Tead to a-complex time, related to tunneling. We can, after
all, take any two characteristics of the tunneling process with
the dimension of time, and construct a complex number out
of them. I totally agree, however, with Refs. [5] and [7] that
the duration of an.event is a real number. It cannot be com-
plex. Has anyone seen a stop-watch with complex numbers
oA its dial? If traversal times are best characterized by a
statistical distribution [11,12], that distribution may need
many numbers for its total characterization. But combining
two of these to form a complex number, dogs not yield a
better traversal time. Of course, anyone can give a complex
number the label traversal time; the authors of Ref.[2] do
not possess a trademark for that expression. The real ques-
tion relates to experiments as discussed in Ref. [3] and to
the material in Sec. 5 and Scc. 6 concerned with clocks. How
is the traversal time:used?

5. Clocks

When and why is traversal time interesting? Basically,
because we often oversimplify and treat a many-dimensional
or many-particle tunneling problem as a one-dimensional
problem. We nced to know whether this cheating is reason-
able; do the neglected degrees of freedom, coupled to the
emphasized direction of motion; have time to adjust to the
progress of the tunneling process?-For example, for an elec-
tron tunneling through a barrier, between electrades, do the
image charges on the electrodes have time to adjust to the
motion of the tunneling electron [37—391? In a Josephson
junction circuit under constant current bias, tunneling out
of a metastable state, how much of a transmission line, con-
nected across the junction, can respond while the tunneling
occurs [3,40]? Such coupled degrees of freedom are not the
only possible “clock™ for the tunneling. We can also consider
tunneling in an intentionally modulated barrier [41,42]
much as in Ref. [2], though ‘ie proposed experiments of
that type have not reached e developed state of those
associated with coupled degrees of freedom, adjusting to the
progress of tunneling. In any case, we emphasize that all
these proposed or completed experiments have little relation
to the following of a wave pachet peak or center of gravity
through a barrier.

The notion of comparing the speed of simultaneous proc-
esses, as a clock for one of them, is deeply imbedded in
physics. One version [43] seems particularly close to Ref.
[2], and served as a mode] for that. Consider an atom in a
crystal lattice which can jump back and forth between two
positions. Now apply an oscillatory small stress designed to
favor one of the two pusitions. At frequencies slow compared
to the jump rate the atom will, essentially, see a static stress
and the thermal eyuilibrium distribution between the two
sites will apply. At frequencies high compured to the jump
rate the atom cannot respond to the oscillatory stress. At
intermediate stress frequencies the atomic adjustment will
lag the stress, and the jump is a source of energy dissipation.

Is the traversal time totally independent of the choice of
clock? Very likely not. In the case of an image charge on
an electrode surface, adjusting to the motion of an electron
through a barrier, it is clear that the adjustment is most
important when the electron is near one of the two elec-
trodes. That is not.necessarily characteristic of other clocks.
That dependency, however, hardly inviolates the general

-utility of the concept. Consider, as an analogy, the uncer-

tainty principle AE At ~ h. It really nceds a great many
footnotes to make it precise; that does not make it uninter-
esting or useless. For example, consider two similar wave
packets following each other, but-far apart. The applicable
At is that of the separate packets.

The Larmor clock for tunneling was introduced by Ry-
bachenko [44]. This approach was corrected by Biittiker
[13], and widely explored, thercafter, particularly by Leav-
ens and Aers and by Biittiker. In this casc we have a field
which acts on the spin of the tunneling particle only while
it is in the barrier. The extent of the spin changes during
barrier traversal are taken as a measure of the time spent
in the barrier. Rybachenko originally assumed, incorrectly,
that if the spin, the magnetic ficld, and the direction of tun-
neling were all perpendicular that only a spin precession
would occur, and the precession then would be proportional
to the time spent in the barrier. Biittiker realized that the
component of the transmitted spin, in the direction of the
ficld, would also change.

Like all the other candidates for a clock, the Larmor clock
has some minor blemishes. I do not suggest that they in-
validate the validity of the Larmor clock, but only that they
deserve further attention. Let me list these blemishes; they
are probably of varying seriousness. First of all a spatially
variable magnetic field requires apparatus for its generation.
Is it clear that this apparatus can be built in such a way as
to interact with the tunneling particle only through its mag-
netic field? The apparatus required for a time-dependent
potential is described in Ref. [45]. It is customary in con-
ceptual arguments to invoke arbitrary ficlds which are phys-
ically possible, and the question raised here is, perhaps, un-
necessarily demanding,

The magnetic ficld in the barrier has an affect not only
on the spin, but also on the particle’s spatial motion. This
effect has been measured [46], and analyzed [47]. The rec-
ognition that the spin has not only a precession required
modification of Rybachenko’s original analysis; wouldn't it
be equally appropriate to allow for the simultancous spatial
and spin effects? Possibly, as suggested by both C. R. Leav-
ens and M. Battiker in private communication, the differing
dependence on puwers of the magnetic ficld, H, in the spin
and spatial effects, permit us to wonsider them separately.
The reduction of transmussion, due tu the spatal cffects is
of urder H”. Spin precession is proportional to H, as 1s the
spin polarization in the direction of H (for small H).

Finally, a5 puinted vut by Jonsun [7]. Once we go beyond
Rybackenku’s vnginal erruncous limitation to spin preces-
sivn, the interpretation is harder. Section D of Ref. [13]
invokes an analogy with two level systems to yield a tra-
versal time. Plausible, but not totally defimtive.
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There are many alternative clocks possible that have not
yét been investigated in the literature. We can have a particle
beam.with.a time-varying spin incident on a barrier which
transmits all the incident spin directions equally. Does the
emerging beam faithfully and instantaneously replicate the
incident beam? This version of a clock suffers from some of
the same blemishes as the:wave packet following proposals.
Or, instead of varying the incident spin, we can modulate
the incident energy. Instead, Refs. [4,48] invoke a beam with
an oscillatory incident amplitude. Does the emergent beam
faithfully and instantaneously replicate the incident beam?
As the modulation period-is reduced, by increasing the en-
ergy separation of the interfering arriving beams, where does
the faithful replication cease? Clearly this approach to tra-
versal time yields a result which depends on the energy de-
pendence of the complex transmission cocfficient. This ap-
proach also, of course, suffers some of the blemishes of wave
packet following. The effects of the Lorentz force, due to a
magnetic field limited to the barrier, providing a spatial
deflection during barrier traversal, offers another possible
clock.

6. Energy Dependent Transmission vs, Barrier Height
Dependence

The approach of Ref. [2] invoked barrier height modu-
lation; the traversal time depends on the barrier height de-
pendence of the complex transmission coefficient. At inci-
dent energies way above a smooth barrier, where the WBK.
approximation applies, there is complete transmission.
There, it is only the dependence of the phase of the trans-
mission coelficient which counts, giving a result which agrees
with the usual notion that dw/0k, with hk a local momen-
tum, describes the particle’s velocity. For incident energics
below the barrier peak, and for opaque square barriers, or
opaque barriers to which the WKB approximation applies,
it is primarily the magnitude of the transmission coefficient
that matters. The effective local crossing velocity is then
Bwf0x with hx the magnitude of a local imaginary momen-
tum. At intermediate values of energy, or for more compli-
cated potentials, e.g. as in resonant tunnelling, both mag-
nitude and phase may have a comparable barrier height
dependence. A general result for the traversal time was pro-
posed in Ref. [13]. In terms of the transmission amplitude
T'2¢i%4, where T is the transmission probability and A¢ is
the phase change in transmission through the barrier, the
traversal time can be expressed in the form [see Eq. (2.18¢)
of Ref. {13] and Eq. (6.1) of Ref. [16]].
7r = h[@InT'AV)* + PAP/OV)*]". 6.1)
It is the sensitivity of the transmission probability as well
as that of the phase, with respect to a small change in the
barrier height ¥, that counts.

Clearly, Eq. (6.1) has the correct imiting behavior when
only one of the two r.h.s. terms 15 present. It gives a traversal
time which is real and measures the vver-all dependence of
the complex transmissivn woefficient un barricr height. Nev-

ertheless, I agree with. Jonson [7] that Eq. (6.1) while rea-
sonable, is not the only possible quantity that meets the
expectations that we have listed. If, instead of stressing bar-
rier height dependence, we'stress dependence on incident
energy, as suggested in Refs. [4], and [48] then the equiv-
alent of Eq. (6.1) (with the 9/0V replaced by 0/0E) becomes
a natural consequence of the reasoning provided in Refs.
[4] and [48].

Eatlier we pointed out that the traversal time of Ref. [2]
does not necessarily correspond to the delay caused by the
insertion of a barrier. Consider the case where we have a
long region of uniform potential, with a barrier in its center,
and apply Eq. (6.1). The r.hs. of Eq. (6.1) has the form
(a*+ bY'™. For b > a this is approximated by b + a¥/2b. If
the region of uniform potential is made sufficiently long,
then the (0A¢/0V) term in Eq. (6.1) dominates. The effects
of the barricr opacity manifested via dlnT'?%/0V become
unimportant, and do not give us an additive contribution
to the total 77 of Eq. (6.1). On the other hand any terms due
to the barrier, related to wave function phase changes, do
simply add to the 9A¢/0V contribution arising from prop-
agation through the remaining long region. Thus, if we ac-
cept Eq. (6.1), it is natural that wave packet followers, con-
cerned with the asymptotic behavior far from the barrier
(e.g. Ref. [49]) do not see the results of Ref. [2], but see
only a phase related term.,

As already stated in Sec. 5, instead of using the depend-
ence of the transmission coefficient on barrier height, we can
invoke the energy dependence. If we modulate the potential
along the whole axis, then, whether we modulate energy or
potential is irrelevant. That, however, was not the intent of
Ref. [2], which only invoked a potential change limited to
the barrier. Leavens and Aers [16, 50], have emphasized the
distinction between energy dependence and barrier height
dependence. Sce, for example, Figs. 3 and 4 in Ref. [16].
This point is echoed by Biittiker {6]. These investigators
are, of course, in a literal sense, correct. But the distinction
does not really seemn as serious as maintained in Refs,
[6, 16, 50] which stress the behavior at very low incident
energies. At low incident energies, with a long incident wave-
length, the matching at the barrier boundaries becomes im-
portant; the energy dependence of the transmission coefli-
cient is not dominated by the exponential decay in the bar-
rier. As a result the energy dependence of the transmission
coefficient diverges at low energies, whereas the derivative
with respect to barrier height decreases monotonically as
the incident energy is decreased. That, however, is the be-
havior for a given value of barrier length. For longer barriers
the terms due to the exponential decay in the barrier be-
come, relatively, more important. As a result, the energy
range, in which the difference between energy dependence
and barrier height dependence is important, becomes
smaller.

Which is the more significant measure of traversal time?
That resulting from the encrgy deny ative of the transmissivn
woeflivient, ur that resulting from the barrier height vana-
tion? The derivative with respect tu incident eneigy results
from arguments Josely akin tu fullowing wave pachets, and
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shares-some of those problems. It is more sturdy, however,
allowmg us.1o avoid-the concern with peaks and centers of
gravity. Changes in transmission, as we change energy, are
measurable. In contrast, the barrier height derivative arises
from the introduction of a physical “clock”. Despite some
preference.for. barrier height modulation, this is not neces-
sarily the most settled question, and it remains a murky
corner of the subject. We will discuss it, here, in some more
detail, without necessarily settling it.

The variation of transmission coefficient with energy has
the advantage that it is clearly defined. By contrast, varying
the barrier height is an ambiguous cperation, except perhaps
for the rectangular barrier. In that case, with a uniform
potential in the barrier, the obvious interpretation is to in-
voke a simple modulation of the barrier height. In the case
of a smoothly varying V(x), however, it is not equally clear
what modulation 8¥(x) should be chosen. Note, inciden-
tally, that some support for the choice of a ¥ independent
of x, in the region of interest, is provided by the case of a
periodic potential. In that case, within an allowed band;
Ow/ok, with k the Floquet wave number, is well established
as a physical velocity. We get that result (but complicated
by boundary matching effects) if we take 8V independent of
x. A non-uniform 8¥(x), on the other hand, will produce
interband transitions which are hard to relate to the ex-
pected result,

The distinction between cnergy variation and potential
height variation is, of course, not all that great. A variation
in the barrier height can always be represented (in the small
modulation linear approximation limit) as a sum over.spa-
tially localized potential oscillations. At each location x,
along the barrier, we have a potential modulation limited
to the immediate vicinity of x. The overall effect of a smooth
potential variation, 6¥(x), all along the barrier, is the sum
of such localized effects. At each localized potential oscil-
lation, with an unperturbed wave function at energy Eq, we
generate “sidebands” at E,+ hw. These, then, propagate
away from their point of origin according to the unmodu-
lated’ potential. In the case of a time modulated incident
wave function, the terms at different energies are already
present in the incident wave; in the modulated barrier case
they are generated all along the barrier. In many cases, that
will not result in a serious qualitative distinction. In the case
of a modulated incident wave, of course, any energy sensi-
tivity in the matching procedure at the turning point will
contribute. That is the reason for the distinction between
barrier height dependence and energy dependence stressed
in Refs. [6,16] and [50], and already discussed.

Iam indebted to stimulating interactivn with G. Aers, M. Jonson,
and K. W. H. Stevens, even if we did not reach complete agreement.
The interactions with M. Biitiker and C. R. Leavens have been
totally critical to the development of my views, but once again do
not reflect a complete overlap in taste.

Appendix

Stevens presents several related analyses in Refs. [27 - 29], and
we will exemplify our difficultics, and nut diswuss all of Stevens's
cases separately. We will use Ref. [28] as the basis for vur diseus

sion. In Ref. [28], for example, one of Stevens’s cases deals with a
pulse which'has just arrived at a barrier. We.quote from Ref. [28]:

Then just inside the barrier we assume that-y has-been zero up
until ¢ = 0 and now it begins to oscillate with a definite frequency
aq. That is, we require a solution of our equation which describes
propagation in the positive x-direction (which is in the barrier)
and satisfies

fort <0
fort>0.

90.0= {0 i

The contour integral

1 ciwt
2 (0 —~ wo)

taken along the line @ = + 0 + icto — <o -+ ie satisfies the

initial condition, ...

Stevens then goes on to take a superposition of solutions which at
the left end of the barrier correspond to the above contour integral,
Note, however, that if the incident wave from the far left, just to
the left of the barrier, behaves as described in the above cquations
for y(0,1), then the combination of incident and reflected waves will
differ. And it is this combination which has to be matched just to
the right of the barrier; it is not just the incident wave which needs
to be matched. Stevens, in correspondence, indicates that heis really
analyzing the case where the combination of incident and reflected
wave vanishes for ¢ < 0 and oscillates as ¢'*' for ¢ > 0, In that case
his analysis is correct, but its relationship to the rest of the papers
discussed here becomes more obscure.

In a subsequent cxample, Stevens has a barrier to the right of
x =0, extending to x = ov. As initial condition he assumes that at
xo. where xg <0, the disturbance is zero until ¢ = 0, when it becomes

~law! Now, Stevens finds a superposition of plane waves, coming
I'rom the left, which satisfies this requirement. Let us denote this
wave function by § A(k)c®~<d, In the presence of the barrier we
will have a sct of cigenstates, lpk(v), which include reflected waves
and have an evanescent behavior in the barricr. Let us choose the
normalization of ¥ (x) such that the incident portion of the wave,
coming from the left, is ¢'**~<, Now Stevens chooses
(60 = AR (e (A1)
as his total solution, which clearly obeys the Schrodinger equation,
along the whole x-axis. But, unfortunately, it 1s not clear how the
total wave function, including incident plus reflected waves, behaves
at xg with time. Is it clear that Eq. (A.1) gives us a y which fort <0
vanishes in the barrier and has a vanishing reflected wave contri-
bution?

In a third case Stevens assumes that at ¢ = 0 the wave function
is given by

exp(ixwl?) forx <x<0

%0 = { forx > xo. a2)

where ag 15 the left of the barrier. Eq. (A.2) invokes Stevens’s no-
tation and units, where the incident wave number is expressed in
terms of the square root of the incident energy. Then, once again,
Stevens chooses a superposition of exact solutions (in the presence
of the barricr) whose incident wave portions, considered by them-
selves at £ = 0, add up to give (A.2). But does the total superposition
of the correct cigenstates also add up to yield (A.2)? Why should
they? To continue in a little more detail (x.0) can be represented
as a sum over a set of Hamiltonian eigenstates That holds whether
we take tp(x.O) as in Eq. (A.2), or whether we take p(x,0) to be
expliawy ) only between two puints A, and A, and vanishing out-
side of that nterval. (We mdy want tu take this latter choe, sug-
gosted an cotrespundence by Stevens, to avund wave functions ex-
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tending to infinity).-If the basis functions are ¢ (x) then the relative
weight of @ in the expansion of y is-given by. {otv(x, 0)dx. First
of all, let. ¢y be the plane wave states over the whole x-axis. That
leads to-the results given by Stevens on pg. 3651 of Ref. [28] Now
consider a potential whxch is infinite for x > 0, then the cigenstates
will be

weo= 21 Sinkx, = e —g=ikx (A3)
‘Now expand-p(x,0) in- terms of the u,. Stevens asserts that the
expansion in terms of the-u; is trivially given by the expansion in
terms of the ¢. That requires

0 -3
§ drv0dx= | utp(x0dx.

-

(Ad)

(I ignore possible normalization questions, arising from the fact that
the u, are nonvanishing only in the left half-axis, Any correction
due to such questions will be manifested by a-factor independent
of the value of k). The two integrals in Eq. (A.4) can only be equal
if the reflccted wave, given by the final r.h.s. term of Eq. (A.3), makes
no contribution to the r.h.s. integral in Eq. (A.4). And that is not
in agrececment with the results of elementary integration, for almost
all &, Note that the ratio between the two sides of Eq. (A4) depends
on k, and cannot be offset by any possibly neglected normalization
questions. Thus Stevens is using incorrect expansion cocfficients,
multiplying correct cigenfunctions of the Schrddinger cquation.

In correspondencc Stevens has countered my objections to his
“third case”, discussed in the preceding paragraph, Stevens asserts
that the contribution of the ¢=** terms in Eq. (A.3), after using his
weighting, derived from the Lh.s. of Eq. (Ad4), and intégrating over
all k, vanishes at ¢ =0, and for x < 0. Therefore, the initial condi-
tions are satisfied, on the left hand side of the x-axis. And, clearly
he has a solution of the Schrédinger cquation,
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The Role of Barrier Fluctuations in the Tunneling Problem
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I. V. Kurchatov Institute of Atomic Energy, 123182 Moscow, USSR

Barrier Fluctuations [ Quantum Mechanics ;' Tunneling

Interaction of a tunneling particle with fluctuations of the barrier induced by phonon or electron excitations
s analyzed. Special role.of nonadiabatic excitations with the energy smatler than the reciprocal-time a
particle spends under the barrier is discussed. In an insulator the interaction with barrier fluctuations can
play a .dominant role leading to qualitatively alteration of the pattetn of the quantum diffusion. At that,
the increase of the tunneling transition amplitude (coherent bandwidth) instcad of the polaronic narrowing
and significant change of the temperature dependence of incoherent tunncling motion take place. Analysis
of recent experimental results on the quantum diffusion of muoniuim in KCl crystal revealing the decisive
role of the-barrier fluctvations is given. — The infrared divergence accompanying the rescattering of the
electron-hole excitations near the Fermi-surface causes the increase of the interaction with the barrier
fluctuations in a metal. Rigorous analysis for a two-well system with a completely arbitrary interaction.
of the electrons with a tunneling particle is carried out. It shows that there are‘no parameter values for
which the interaction with barrier fluctuations overweight the intrawell interaction though the inelastic
transition rate sharply enhances, The general problem of the validity of substitution of a phonon heat
bath for an clectron one is discussed.

1, Introduction

In an analysis of the tunneling of particles in a two-well
potential or in a regular crystal, there are typically two
mechanisms for interaction with excitations of the medium,
The first is intrawell interaction-which leads to a polaron
effect and -which predetermines disruption of the coherent
coupling between wells or dynamic destruction of a band.
At higher temperatures this mechanism leads to incoherent
transitions .with “shaking” of the polaron “cloud”. The in-
trawell interaction does not depend on the overlap integral,

The second'mechanism involves fluctuations of the barrier
resulting.frezni-the interaction with electron or phonon ex-
citations. The majority of works treating the tunneling mo-
tion of particles in the medium do not take into consider-
ation this mechanism. Howevér,. there are no grounds for
that in the general case. As long as m.-the early work [1] it
was shown that the interaction with th:, barrier fluctuations
can qualitatively change the pattern of quantum diffusion
in the medium. First of all, this is due to the so called effect
of fluctuational barrier preparation. In an insulator, with
taking into account the interaction with phonons, an effec-
tive reduction of the barrier for extreme path of the particle
under-barrier motion corresponds to this effect. As a result,
there arises a considerable increase of the tunneling transi-
tion amplitude and, instead of the polaron narrowing, the
interaction with phonons may cause an increase in the co-
herent bandwidth. Simultaneously, the temperature depend-
ence of the quantum diffusion coefficient is also changed,
including the region of exponential increase of D(T') with
rising T.

Below we shall follow a vivid manifestation of the role
played by the interaction with the barrier fluctuations in the
insulator, by using experiments on the quantum diffusion of
muonium in KCl crystal [2], [3] as example.

In considering the barrier fluctuations relevant to the in-
teraction with the conduction electrons in a metal, we face
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a specific situation. As it has been established earlier [4],
the tunneling particle is actually scattered only by nonadi-
abatic electren excitations lying within the energy interval
with the width w, in the vicinity of the Fermi level (w, being
the inverse time of thezparticle passage under the barrier).
The small phase volume of these excitations results in a
limited scale of the barfier fluctuations. If we neglect the
electron rescattering by the particle, the probability Wy of
the tunneling transition induced by the barrier fluctuations
at low T < ay is small over the parameter

(1.1)

as compared with the transition probability in conservation
of only the intrawell interaction. Here & is the asymmetry
of the neighboring wells. (It is assumed that £ < w).

However, in taking into account the rescattering of elec-
trons, the well-known infrared divergence sharply enhances
W This circumstance was originally pointed out by Kondo
[5]. Zawadowski et al. [6 - 8] undertook a detailed analysis
of this problem, using a multicomponent renormalization-
group method for the partition function of the system. They
found a significant increase in the role played by this mech-
anism dunng tunneling in a metal. However the question of
whether the second mechanism can become more important
than the first one in an actual tunneling problem remained
open.

In addition to everything else, this problem hdas one im-
portant aspect: The overwhelming majority of the studies
of the tunneling of 4 heavy particle in 4 metal have used the
concept that the electronic and phonon thermal baths are
equivalent and phonon bath has been used in the caleula-
tions (see, e.g., the review [9714. In the case of phonons, how-
ever, there is no infrared enhancement during the rescatter-
ing of cxutations, su the inequality (1.1) makes 1t possible
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to-ignore fluctuations of the barrier. In.tefms of the widely
used.spin. Hamiltonian, the implication here is that theré:is
no term:representing an intefaction with excitations of the
‘mediunt which is proportional to the:matrix ¢,. The ques-
tion .of the role of ‘the inelastic processes associated with
fluctwitions of the barrier is thus related fo the general ques-
tions-of whether it is valid-to replace-the electron bath-by
the phonon bath.

This paper contains the résults [10] of the direct solution
of. the kinetic problem while incorporating the interaction
with:barrier' fluctuations, for a completely arbitrary inter-
action of the-electrons with the tunneling particle. It turns
out to be possible to find the explicit relationship between
the:renormalized amplitude for a tunneling transition and
the probability for hopping between wells, on the one hand,
and the scattering phase. shifts, on the other. These phase
shifts are actual physical parameters which characterize the
interaction, The primary of the analysis below is the rigorous
proof that there are no parameter values for which the sec-
-ond mechanism outweighs the first. The proof is presented
for a two-well Hamiltonian of a general type.

The approach used in this paper is based on a direct
determination of the overlap integral of the many-particle
intrawell wave functions. This method allows one to take
into consideration the barrier fluctuations in a natural way
and to single out coherent and incoherent tunneling inde-
pendently. This makes it possible to proceed simply from
the results for the two-well system to a crystal in order to
solve the quantum diffusion problem.,

2. Adiabatic Problem

In analyzing the tunneling motion of heavy particles in
the crystal, only the under-barrier motion betwesn two
equivalent positions in the nearest unit cells practically al-
ways turns out to be significant. In this case, the problem
of particle mation in the two-well potential at an arbitrary
interaction with excitations of the medium is isomorphic for
the description of the elementary act. The solution of the
two-well problem is sufficient both for the description of the
coherent motion of particles in the crystal and for the in-
coherent motion, when the phase memory is lost at each
translational step.

Let’s consider the tunneling between two wells, the lower
levels of which are separated by an amount &, and assume
that the tunneling amplitude 4,, temperature 7 and £ are
small in comparison with the distance w between energy
levels in an individual well

4, ¢ T < 0. 2.1)
At the same time, the ratio between Jdq, & and T can be
arbitrary. The condition (2.1) allows us to ignore activation
processes and to assume that the transitions occurs only
through the lowest level.

Two time scale are characteristic of the problem. the life-

time of the particle 1n a well 7 and the time w, ' spent by
the particle under the barnier. For 4 common non-exotic
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potential relief in a crystal the frequencies w, and w are.close
by the magnitude and further we will not distinguisk-"e-
tween them.

Taking into-account (2:1) and the-evident relation t~' >
4, one immediately obtains the inequality
Wyt > 1 (2.2)
During the long lifetime = a many-particle wave function
v?(r, R) in a well i, incorporating all virtual excitations with-
e > v, is formed. The solution of the adiabatic problem
has a crucial meaning for the structure of this wa  function
and it's evolution in a process of tunneling..As was shown
in Ref. [4] in this case the correct results could be obtained
only if une takes into consideration the intrawell virtual
excitations of a particle. The analysis leads to a natural
distinction between “fast” and “slow” excitations of the me-
dium. The fast excitations with frequencies ¢ > w, adjust
adiabatically to the position of the moving particle both in
the well and under the barrier. They form the screening and
thereby, give rise to a renormalization of the potential relief,
U(R), and to a slight extent the particle mass. On the con-
trary, the slow excitations with ¢ < wy do not follow the
particle and the modified wave function of the medium
which corresponds to these excitations turns out.to be ori-
ented toward the center of the potential well, These exci-
tations have the decisive effect on the tunneling. The inter-
action with them predetermines the appearance of the po-
laron effect and due to (2.1) the entire diffusion kinetics at
low temperatures. In forming this nonadiabatic. part of the
wave function, the energy interval of slow-excitations turns
out to be truncated rot only at the top but also at the
bottom on the scale of t~'. This is connected with the fi-
niteness of the particle lifetime in an individual well. In virtue
of this, the admixture of states with ¢ < 77! fails to be
formed.

In a metal the spectrum of electronic excitations extends
up to the energy & which, in the order of magnitude, is equal
to the Fermi energy ¢ or the bandwidth. The following
inequality is always characteristic of the heavy particle tun-
neling
Wy < & 23)
This means that the small phase volume corresponds to the
nonadibatic electronic excitations. In spite of the above, the
part played by these excitations turns out to be very signif-
icant in virtue of the well-known infrared divergence spec-
ified by the electron-hole pairs with the energy close to zero
(sce, e.g., Ref. [11,12]).

During interaction with phonon a different pattern takes
place. If the mass of a tunneling particle is relatively small,
then wy > &, where +, is now of the order of the Debye
temperature @p. In this case the whole phonen spectrum
turns out to be nonadiabatic. In the opposite limiting case
of 4 heavy particle tunneling in a light matrix, the (t =, )
interval turns out to be nonadiabatic, as in the case of elec-
tron. However, in actudl crystals the density of phonon ex-
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citations-goes to-0 as.s — 0, which removes the infrared
divergence:and the phase volume smallness is.not compen-
sated for.

In a.sense, the particle and-adiabatic excitations which
have -adjusted to it form a real physical entity the under-
barrier motion of which as a whole one has to study. There-
fore, in general, the problem reduces to one of studing a
Hamiltonian which describes the motion of such a “particle”
in a renormalized potential U(R) with a slightly renormal-
ized mass M. The interaction with the medium contains only
slow excitations ¥ (r;R) with:energies ¢ < w,.

In the renormalized potential relief-we single out nonde-
caying individual well U® (R), extending its edges in the
usual way, If the Hamiltonian of a particle in such a well is
deroted by HY, the geriral Hamiltonian of the one-well
problem can.be written in the form

V

HO = HO+ Ho (N + V(r, R), BY = ;4 +UMR), (24)

where H.,(r) is the Hamiltonian of the excitation subsystem,
Let"us tise H'(R) to denote’the difference between the true
potential relief .and the chosen non-decaying well UY(R).
Then, for the miatrix element of the transition from one well

to the other we have

My = (@ R)H R) ' (n R),

where ¥ (r, R) arc.the eigenfunctions of the Hamiltonian
(24).

Under the condition (2.1) the knowledge of the matrix
clements (2.5), both nondiagonal and diagonal in the state
of the medium «, fully determines the problem of tunneling

(2.5)

‘with interaction with the medium. This also applies to the

problem of a coherent transition with the formation of band
(« = B), if we are dealing with a crystal.

The fact that only the interaction with slow excitations
appears in (2.4) predetermines the possibility of seeking the
cigenstates of this Hamiltonian in the frame of reciprocal

adiabatic approximation.
w0 R) = ol (R,NPD(), (2.6)

where the wave functions ¢f and &% are solution of the
equations

[H“’ + VI RV R = s () ol (R,1) @)
HY + § 0190 () = EQ 920).

Now the particle is moving in the distorted potential relief,
created by slow excitations.

The scale of displacement of the particle located at the
lowest level in the well from the equilibrium position R, 1
small as compared with the inter atomic distance “«”, There-
fore,

&)= — + o "(R NV @ R 98 (R, 1))
238
)
~ —‘%— + VR).

It follows from (2.8) and the second equation in (2.7) that in
shaping the wave function & the excitations effectively see
the particle positioned at the center of the potential well:

() = &,(rR).
Substituting (2.6) into (2.5) we find

Map = <P OO ()3
J () = <ol R, ) H' R o§ (R, 1)) .

29)

The expression for J(r) reflects the dependence of the tran-
sition tunneling amplitude on the distortions of the barrier
which result from the interaction with fluctuations in the
slow excitations subsystem. Interestingly, the situation
which arises is precisely the opposite of the conventional
adiabatic case; during the time it takes the particle to pass
through the barrier the electron or phonon fluctuations re-
main static,
The expression for J(r) can be written in the form

J(r) =

doemB0), (2.10)

where B(r) is given by
B=[[2MU + V)]*dR ~ [ [2MU]"*dR.

Noting that the scale of the changes in the barrier are small
in comparison with its height, one can expand 'this expres-
sion

~ V(r’RO)
J.S(R) V(r,R)~"—w .

(211)

Here 8(R) s the velocity of the particle in the upturn barrier
Substituting (2.10) into (2.9), we finally find
Myp = 4,{2P W] e3P 1) . (212)

The structure of expressions (2.9), (2.10), (2.12) reflects the
fact that the effective reduction of the barrier due to the
fluctuations corresponds to the optimal path of tunneling.
This effect called “fluctuational barrier preparation” was
considered for the first in Ref. [1] for the tunneling problem
in interaction with phonons.

In the case of interaction with electrons the small phase
volume of the energy interval of nonadiabatic excitations,
which determines B (2.11), results in the estimate B < 1. In
interaction with phonons, if w, > @y, there are no principal
limitations on the magnitude of the B value.

The matrix element (2.12) is defined in terms of wave
functions which are eigenfunctions of different Hamiltoni-
ans. As always in such situations, it is thus convenient to
introduce a unitary operator A4, which relates the represen-
tations of the functions @}’ and . We make use of the
circumstance that the translational symmetry of the problem
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makes.it possible to' retain the same-classification at the
displacement of a-particle. We can then write:

A[B>; (2.13)

o = AP =

and, correspondingly,
Mge= 4o <ale™ 4]B) . (214)

Here the o and f subscripts belong to'the eigenstates which
are the solutions of the second equation in (2.7) fori = 1
with allowance for (2.8), or to the eigénfunctions of the Ham-
iltonian

Hy = Hy + V(r,R).

The amplitude 4¢ of the coherent transition between the

. wells, which is responsible for the formation of a band in a

crystal, is determined by the relation

dc = do<ale~B Ajay =Sp {ee~P 4}, (2.15)
where g is the equilibrium density matrix of the excitations.
After the dynamic destruction of the coherent band with
increasing temperature [13, 14], the tunneling motion of the
particle acquires an incoherent character. In. this case the
site representation is adequate for the problem and the prob-
ability of a transition to the next well can be represented in
the following form

Wp=43 f deei¥'Sp{oa* (1)e~PWe=P0 4(0)}. (2.16)

3. Electron Polaron Operator

To study the role of the barrier fluctuations, we begin
from the case of interaction with electrons.

The Hamiltonian of the system for the case in which the
particle is in well 2 can be written in the form

H=H +AV=X aadats X AViwaisaps

ho hk'oc (3.1)
AV = Vire (1 —exp(i(k— k') (R — R»)).
We seek the wave function @§ in (2.13) as an expansion in
states of the Hamiltonian Hy. ®§ differs from #§ in an
arbitrary number of electron-hole pairs. We make use of the
fact that the amplitude for the creation of two pairs breaks
up into a product of amplitudes with a macroscopic accu-
racy. The operator A can then be written as

A= Sexp{—- Y C, a*,‘as} =S[la-cC.a%a), (32
58" ss°

where § is the normalization factor; s = k,o. The index s
in the product (3.2) specifies exclusively vacant single-par-
ticle states in |a), while s specifies exclusively occupied
states (the « on the summation and product signs is intended

to flag this circumstance). It is this circumstance which al-
lows-us to go to the latter equality in (3.2), since thc spaces
{s} and {5’} do not overlap, and all the terms in the expo-
nential function commute with each othet.

We substitute expansion (3.2) into the Schrédinger equa-
tion

LH, +-AV] 45};2) }2)
[4~'(H, + AV)A]/m' = Epdpp-.

(33

Since the effect of the operator.4 (and 4~*) reduces to one

-of simply creating independent electron-hole pairs, there is

no difficulty in finding an explicit form of Eq. (3.3). A so-
lution can be written in the form

E, = - E 4V.Cyy, (34)
ss’
Cos = —:1— ) {A Ve Z (1 —1)AV, - Gy
s — Ege p 3.5)

+ % NpylAV s Cope -%;'(1 =, AV, Cy, C,,,'}.

1t can be concluded from the form of (3.2) that the coef-
ficients C,,- mean the probability amplitude for finding in
®ff state with.a single electron-hole pair, ata,|«. It is thus
no accident that relations (3.5), (3.4) are the usual equations
of the perturbation theory. A state with a single pair can be
obtained through direct creation from state |a), through
rescattering of an electron or a hole, or through annihilation
of an extraneous pair from a state with two electron-hole
pairs. These possibilities correspond to the order of the
terms in (3.5).

Let us expand AV in some complete system of function
defined on a unit sphere, separately for the argument k/k
and k'/k’. One can easily show that th Hamiltonian (3.1)
can be put in a diagonal form in the ge.= al case for k and
k’ near the Fermi surface. Then

AVie = ; AV(e.&)- (k) - Q5 (K); (3.6)

To make the exposition more transparent we assume scp-
arability of AVj(s,¢)

AV, (e,€) = AV (e)a¥(e), 37
where «;(¢) is a smooth function of the energy, and o;(0) =
1.

The solution of Eq. (3.5) can then be sought in the form

Cuw = Z Q,(k)- Q3K C,(e.€);
(3.8)
A V;(s &)

Gilee) = * & (&€
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After averaging over angles, the terms with different j split
up, and we find equations for ¢; and-#,.

al]( )I

Ee) = 1~ AV, de’g () —=————1n;(e) ()

- nc)lotj(rS)I2

(39)

'l;(b‘)‘— 1-AV,f de'e(e) =6i(e)nye)

(3.9) is a system of nonlinear integral equations which en-
tangle the mechanisms of electron and hole scattering. The
system has a latent symmetry, however, which allows us to
convert it into.a linear system of equations,

2
50 =1~ &0av, 2L 94
(3.10)

+ AV I—@“’%@@@)e(y)oly

Here o(e) is the electron density of states, and n(s) is the
occupation number. It turns out that ; and £; are connected
by the simple relation

n__Ge)
m(E) = ng &)’

. (3.11)
60 =1+ anf 1 o ya) ™,

where g; = g(ep) AV is a dimensionless interaction constant.

This kind of equations is well-known in the theory of
singular integral equations and has an exact solution [15].
The equation of this type has been used extensively by No-
zieres and de Dominicis [12] for the problem of X-ray ab-
sorption in a metal, accompanied by the creation of an elec-
tron near .

We are interested in the solution of (3.10) at ¢ &~ 0. It
acquires a particularly simple form-at 7 = 0

wo (sllﬂ
)~ A,IT , 6=tan"'G)(0) (3.12)
(4; ~ 1). And, consequently,

AV,(s &) "f sind;
Gled)=——7—"7 e (3.13)

In these expressions d; is the phase shift in scattering of an
electron at the Fermi surface in the potential AV,

At finite temperature, approximate expressions sufficient
for all physical applications can be written in the form

W S/
Gi(e) = dj|——
f} 7;)max ( S 5 (314)
Vi) | (€ Daax [ sind;
Ci(e,e) = . | .
j( ) (81 T)max ng}

The normalization factor S in (3.2) is equal to the overlap
integral (¢%P'| §@>. Its value can be calculated from the re-
lation {x|A*Alad = LAt T =0

s 1) 1o (3

This result was known from the, previous studies [12], [16].
In the tunneling problem the cutoff of the logarithmic di-
vergence in (3:15) is connected with a finite lifetime of the
particle in a well and gy ~ 7!

(3.15)

4. Effect of Barrier Fluctuations on a Tunneling in a Metal

The resuits of the preceding section allow us to determine
the effect of the barrier fluctuations on coherent and inco-
herent tunneling processes. Retaining the first two terms in
the expansion of the exponential function in (2.15), we find

= 49 + 44Sp (¢ B 4)
A9 = 4,85

1)

’ Taking into account that e, = y 4., the self-consistent value
of 49 is equal to (see, e.g., [9])

A bf(1=b)
49 % 4, ( lﬁ.) : 42)

o

y is a known numerical factor for lattices of different types.
According to (2.11) the expression for B can be written in
the form

43)

Let us expand By, with fexl, lex] ¢ @wo <€ ¢r in the same
system of functions £:

Bue =2 By~ 0, (6)- Q5(K). “4)

The fact that all the terms in the argument of the expo-
nential function in the definition of the operator A in (3.2)
cominute (this circumstance is the basic distinctive feature
of the method which was selected for constructing this op-
erator) means that the evaluation of the matrix clements will
be a simple process. In the case at hand, using (4.4), we
immediately find the following expression for the second
term in expression 4.1)at 7 = 0

B;AV;sind
il | i QZ(SF)
PoTeg; @.5)
% (1 —n)n dede’ |¢ |7"
= 1a

A§°>22

&

—
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The value of this integral is determined at.the upper limits

of the integration, so the simple estimate with allowance for

(2.11) can be obtained

. 4oSp(@BA) ~ 49 0(er) AVsind. (4.6)

Using gAV < 1, we see. that the renormalization of 4. is
not of fundamental importance. This result continues to
hold at nonzero temperature T < ay, since ¢ ~ w, are
important in-integral-(4.5). It is easy to show that the cor-
rections from higher-order terms in the expansion of e=2
do not alter this result.

Thus, the infrared catastrophe near the Fermi surface has
no essential effect on the fluctuational preparation of the
barrier in thé formation of 4..

As shown in Ref. [13], the amplitude for a coherent tran-
sition begins to decay exponentially. even at temperature
bT 2 4. The under-barrier motion of the particle is now
accompanied by an excitation of the electron subsystem, and
it thereby becomes incoherent. Under these conditions the
transition probability is determined by*(2.16). Ignoring first
the fluctuations of the barrier, one can transform (2.16) to
(see, e.g., Ref, [17,18,4]

0
r=Az-‘ dt 18 H—=x()
W= di ] deetre @7

)= 2b?£y£|:(1 —cos(yt))coth (—2%) + isin (yt)].

An evalution of this integral leads to the expression
[19,20,4]

M (TR _pIT (A +b+iE2nT) o212
&4+ G ra+bnra2+b) '

w'(e) = “43)

Zo(T) = Ao(ﬂT/(Do)b, Q’r = 2nbT. (4.9)

Consider the probability for the process in which the exci-
tation of the electron system is coupled specifically with
fluctuations of the barrier, and begin with a perturbation
theory in B. We first ignore the rescattering of the electron-
hole pair created by the operator B. In this case the tran-
sition probability is given by

W= Ag§ IB.ss',lwolz(1 —'"s) ny

. O]? dtexp[i(§+gs,_gs)t_z(t):| 4.10)
= é: | Besf o2 (1 = ng)ng, W’ (€ + 80— &)

The integral over d¢ in (4.10) is determined over time scales
1/(T,E)max. We single out the constant part of &(t), which
leads to renormalization of 4, by 4o(T); the remainder leads
to a d-function which is smeared over a scale Q4. As a result
we find the simple estimate ({ = 0)

W x (Jofwof r. (4.11)
Comparison of this expression with (4.8) leads to the ratio
W'IW' ~ (Qfw) < 1. 4.12)

In the general-case it is required to evaluate the effective
matrix element B,,- which corresponds to a transition from
well 2 to well 1, in a process accompanied by the creation
of a sing}--¢lectron-hole pair:

B.p = 57 {a|BAIp). 4.13)

From the definition of the operator 4, one can easily collect
possible matrix elements which lead to the state |a) =

a ac|):
By = By = X (1=n)ByCie + L meBysCa

4.14)
B %‘ (1 =) e Bra G G- «

Substituting expressions (3.8) and (4.4) into this equation,
we find ‘

By (@.¢) = By &@ny€). 415)

Using (3.14) and (3.11), we have finally

5 5 -
~ w — w, ————
Bjr (c‘cl) z B”‘ ( (8, I;max ) " ( (CI!T;mﬂX> " (4.16)

This expression demonstrates that there can be an ap-
preciable increase in the amplitude for an incoherent tran-
sition due to the fluctuations of the barrier when the res-
cattering of the electron and hole is taken into account. This
circumstance was first pointed out by Kondo [5]. Zawa-
dowski et al. [6,7,8] undertook a detailed analysis of the
renormalization of this amplitude. A result similar to {4.16)
was first derived by a multicomponent renormalization-
group method [8] for the model with commutator

[V Ry), V(r,R)] = 0.
The transition probability determined by the amplitude

B is obviously given by expression (4.10), with B replaced
by B

" Z aj' I ’ Wy ‘2_6"
w =34 §f werd-gu-nn [ 2|5

[ W, :I--z-:L dede’
(€' Dax wj @.17)

where f, = ¢’ (+) B,- We can estimate the relative order of
magnitude of B even without writing an explicit expression
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forW”..The integral over de and d¢'is determined at energies
of the electron-hole. pairs of the order ¢ —¢' ~ (&, ) (at
energy transfer E > T, the probability W’ falls exponen-
‘tially, ~ e~E/T), Then immediately

N ,2“ "‘0)

'W” ~ W (ﬁ’ I)max ‘(4.18)
Wo

6 = (ij‘)max’ 0]}‘ = (6]"" 5})/ T (419)

Thus, the problem of whether the barrier fluctuations in

a metal can become a leading channel of scattering depends
on-thepossibility for the parameter 8 to become larger than
1. However, it will be shown below that. 0 is, nevertheless,
always smaller than 1 and the intrawell scattering remains
to be the leading process. In this case, one should bear in
mind that, taking into account the rescattering, the transi-
tion probability also.contains a correction being linear in
B. However, this correction is determined only by j-diagonal
of the B operator, which display no enhancement (4.16). At
the same time, the small parameter appearing in this case
contains the ratio (£, T)max/wo Only to the first power.

The J; phases which occur in expression (4.19) characterize
the scattering in the nonspherical potential created by the
difference V(r,Ry) — V(r,R;). The scattering matrix S cor-
responding to these phases can be expressed in terms of the
S-matrices relevant to the scattering by the particle in-an
individual well, Indeed, the outcoming wave ¢g;' being the
solution of the Schrodinger equation for the Hamiltonian
H®.is, on the one hand, conventionally connected with the
outcoming part of the plane wave cp°“‘

¢0\ll —_ S ‘poul

while, on the other hand, through the S matrix it is related
to the wave outcoming from the center at the point R,

¢oux — §¢oul — S SI (poul
Henre, it immediately follows that

S=2858""1=¢”S e PRS (R =R, ~ Ry), (4.20)
(cf. [16]). In the latter equality we made use of the trans-
lational symmetry, p is the momentum operator.

The eigenvalues of the § operator equal to ¥4, The dif-
ficulty in their finding is attributed to the noncommutative
character of the S; and S, matrices, since [V}, V3] # 0.
Within the representation of standard spherical functions
Y, (k/k), « = (I, m), where the S; matrix is diagonal, the
eigenvalues are determined from the condition

det Z Eype~ 2% Efe =20 — ¢#98,p| = @.21)
where
Eup = I do, —Yi(k)e KR Yo(k); EF = E~'. 4.22)

At the finite number of the 5 phases, it-is convenieit:to
transform the elements of the determinant (4.21) to the form
which-would contain phases only in the combination (¢¥2%”
—1)..After that, the determinant.rank becomes finite. Direct
algebraic transformations of (4.21) make it possible to reduce

‘it to the form

Gy+z
det Z ay G —1:_75541 =0 4.23)
Here
G, =tan’d®, z=tand. (4.29)

The symmetry specified by the shift operator ¢%, if we
choose R as a polar axis, predetermines the decay of the
determinant (4.21) into the product of determinants, each of
which is characterized by its own azimuthal quantum num-
ber m,

If the potential ¥, is characterized by only one scattering

phase &{, and, consequently, Gy, ) = Gi, dn, then (4.23) is
reduced to a trivial equation

G = B O i = - 429)
Its solution has the form

7= tand = V_—E’T tg oo 4.26)

l/ 1+ E[o,,, tgzéﬁo’

Now, if the b parameter (3.15) is calculated, we immediately
have the result which was for the first time obtained by
Yarhada [18,21].

At R — 0.the AV interaction (3.1) and, at the same time,
d, tend to zero (the overlapping integral (3.15) should reduce
.to 1). Hence, it is possible to conclude that at small R’s the
phase values should be determined by the tan™! branch
between —n/2 and m/2. From the viewpoint of the 0 pa-
rameter, the crucial problem is whether the solution (4.26)
would be able to intersect the boundary |6] = n/2 at a
continuous variation of the R, 89 quantities. This would
mean that at a certain point z would go to oc. It follows
from the form of Eq. (4.26) that this could take place only
under a simultaneous condition of tandf? = + o0; &, =
0. But these singular points are only the point of contact of
the solution & to 1 m/2 values. This immediately follows
from the continuity of & as a function of § and R.

Thus, we come to an important conclusion that, in the
case of one scattering phase, |6 < n/2 (cf. [21,22]). From
this the restriction 0 < 1 directly follows.

Let us now consider the case of an arbitrary number of
phases 6% and find out the conditions under which the so-
lution for z goes to co. To this aim, we rewrite (4.23) for the
case of z =00

det|2 E,, G, E% Gp + Oup| =
"

@27




We ‘make- iise the- representation of the:spherical functions

-in the form

Yin = {61 6"/)/ 2.
One can easily follow that the relations

B = E¥p Eup = (=1)"""Ep,

take place.:Let's introduce two complex matrices

Aap = (=100 +iEpGp; Byp = (—1)*dp—iE%5 Gp

Their product is equal to the-matrix, the determinant D of
which coincides with (4.27). Hence,

D = det [Ayp| - det|Bqg] .

It.follows from the complexity of the matrices A and B
that in‘the general case it is required to satisfy at least two
independent conditions in order to have zeo D.

As a result, in the space of the {6{’}, R parameters of
dimension d the singular points z = o form hypersurfaces
of the dimension d — 2: In the same way as in the case with

.one.scattering phase, this means that at the continuous var-

iation of the parameters the solutions d; do not cross the
[6)] = /2 value, and always remain on the tan™' branch
(—=/2, 7/2). It is particularly evident in the space of three
parameters {0{", 6, R}. In this case the singular points form

. lings and all the phase space points may be connected to

the origin without crossing the singular lines.
Thus, we arrive at a general statement that, in the case of
the ‘tunneling motion of the particle, the interaction with

Jbarrier fluctuations always remains weak as compared with

the intrawell interaction, in spite of the enhancement due to
the infrared singularity.

From the consideration presented, if is clear that the fer-
mion and boson heat baths are, strictly speaking, not equiv-
alent. It is possible to ignore this fact only to the extent to
which all the contributions connected with the barrier fluc-
tuations can be omitted.

5. Effect of Barrier Fluctuations on a Tunneling Transition

in an Insulator

Consider now the role of barrier fluctuations during tun-
neling motion in an insulator, when the interaction with
phonons plays decisive role. Naturally, all the results of Sect.
2, in particular, expressions (2.15) and (2.16) are presented
in-this case. The polaron operator A4 (2.13) is constructed
now on the interaction

AV = ¥ Colbe + b*2) + %Zﬁ Caplbs + bE2) by + b))

Ca = Cu(R) = Cu(Ry), Cop = Cup(Ro) — Cup(Ry).
(5.9)

Here the subscript Fa = F g,4, where ¢ is the wave vector;
2 is the phonon branch number. At w,, wgz— 0
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Vo, Cap(R) ~ 1/ wewp

Usually, in analyzing the tunneling in the medium, only
the one-phonon interaction in (5.1) is considered. However,
the' allowance for the two-phonon interaction has quite a
principal character, As shown in Ref. [14], only. in this case
the tunneling motion in a crystal acquires a “viscous” or
“ohmic” character of behavior, It is not accidental that the.
quantum diffusion in a regular crystal at low T'is determined
precisely by the two-phonon interaction- [23,24]. We pre-
serve only the two-phonon interaction in (5.1), since by tak-
ing into account the terms of a higher -order we do -not
introduce any qualitative changes. The results presented be-
low were obtained on the assumption that the two-phonon,
interaction was a weak one and it is treated within the per-
turbation theory.

Bearing this in mind, it becomes possible to represent the
polaron operator in the form [14]

Co(R)) ~ (5.2)

A= Az A; . (5'3)

Here /; is the conventional shift operator of normal oscil-
lators

Cy C.
T

In constructing A, related to the two-phonon interaction,
in-(5.1) only the terms of the scattering type b¥,bs and
b2s b, turns out to be significant.

(5.4)

1 Ca___ s
AZ_GXP{-Z%[% wptift b=a by

C“ﬂ J ]}

Gemapmi S

It should be reminded that in (5.1), (5.4), (5.5) the sum-
mation is taken over the nonadiabatic interval of phonon
excitations o, < wg. In determining B (2.11), we preserve
only the barrier fluctuations stipulated by the one-phonon
interaction

(5.3)

= LZ (Babg + B_abg“‘). (5.6)
o &€

Here, b8, b2+ are the operators of the secondary quanti-
zation, which correspond to the phonons of the lattice non-
perturbed by the particle. They are connected with the op-
erators b,, b*, in (5.4), which are determined at the phonon
states with the displaced centers of oscillators when the par-
ticle is in well 1, by the relations

., CW
e A

x %
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We shall now calculate the coherent transition amplitude
|(2.15). By neglecting the rescatterifig due to the two- phonon
processes, we have
A = Ao <e® 4)<{4y) . 6.7
Here. <...) = Sp {¢...}.-

The calculation of the first average value is performed
directly [1].

do = Jo{As). do(T) = dyePo e= oM +0M), (5.8)
In this expression:

o(T) = %g Ii)"élz coth (20)—7"‘,), (5.9)
is the conventional polaron factor; )

G(T) = Eg 'Zo' (2T) (5.10)

is an exponent stipulated by the barrier- fluctuations.

The B, determines the barrier variation connected with
atoms shifts to the positions equal to a half-sum of the static
shifts appearing when the particle is in wells 1 and 2

(] (2)
BO"_" z B-a(cc( + Cor ).

[ WoWy (5.1 D

The B, value is temperature-independent.

At T — 0 the average {(A,> — 1 and the coherent am-
plitude and, correspondingly, the coherent bandwidth in the
crystal is determined by the 4,(0) value. As seen from the
expression (5.8), there takes place a competition between the
polaron effect and the fluctuational barrier preparation. The
ratio between ¢ and G is arbitrary in the general case, since
the basic contributions made to (5.9) and (5.10) may be con-
nected with the shifts of different groups of atoms. If the
barrier fluctuations prevail, then, instead of the decrease, the
_one-phonon interaction causes the increase of 4. and, in-
stead of the polaron narrowing, the bandwidth will grow
with rising temperature. It should be stressed that at @, >
Op the whole phonon spectrum takes part in the formation
of G (or ¢), and the scale of these quantities may be appre-
ciable. On the contrary, in the case of a heavy particle tun-
neling, when @, € @p, the part played by both the factors
may be rather small.

The {A,) value starts to drop drastically with rising tem-
perature. Already at @p > T » ™! the calculation of this
value, taking into account the explicit form of (5.5), brings
about the result [14]

{dy) = e~ %2, (5.12)

The Q(T) frequency connected with the phase relaxation
rate in the tunneling transition is determined by the ex-
pressioni [24,14]

QT) = n:L;chP N (1 + Np) §(w, — 02p)

exp(w/T)
(exp(w/T)~1)*’

where g(w) is the phonon density of states. The function
A(w) is the average at.w, = wg = w over the phase volume
and branches of the phonon spectrum from [C,g]%

The condition Q7 » 1, under which the coherent band
break-down takes place, occurs in the region of low tem-
peratures T < Op, where J, differs still slightly from its
value at T = 0. At that, there takes place a transition to
the incoherent regime, which is described by the general
expression for the transition probability (2.16) with allow-
ance for (5.3)—(5.6). The straightforward calculation of (2.16)
results in the relation [14] (see also [1])

(5.13)
- { do ¢ (@) 1)

o]
W= 43ehT | dt exp{i&t - —%ln(cosh(nTt))}

(5.44)

-exp(&”(t)+i‘17(t)).
Here
() =§[ICI IIZ;I’:I cos(@t)._.
W 0 smh( )
2T (5.15)
P = 22 C,B.. sin(w,t)

Wa o smh(—z-T)

At T < @p and restricted & this expression is strongly
simplified and results in the form [25]

2430 &T

Vo @ Toear

(5.16)

At £ = 0, proceeding from this expression to the diffusion
coeflicient, we have [24]

_za A
D(T) 3 am)

(517)
2 is the number of equivalent wells with the same energy in
the nearest coordination sphere. This expression hold true
in a broader interval of temperatures and only the 7 » 7~
condition [24] is required. Thus, at low temperatures the
quantum diffusion 1s determined by the two-phonon proc-
esses. The one-phonon interaction, in particular that the
barrier fluctuations, is introduced through the renormalized
amplitude J, (5.8). The transitions induced by this interac-
tion constitute just a negligible correction to (5.17).
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However, the picture changes, when the.condition T’ <
©p ceases to hold true. In this case, the inelastic processes
related to the barrier fluctuations and “shaking” of the po-
laron “cloud” start to play a decisive role. In (5.14) the ¥ (t)
and ¥(¢) functions are responsible for these processes. It
follows from the form of expressions (5.15) that the under-
barrier and intrawell interactions can, 1o an equal extent, be
dominant. At that, the character of the temperature de-
pendence will differ appreciably in both the cases.

Here we present the expression for W (5.14), which cor-
responds to‘the region of high temperature, when it is pos-
sible to assume that ¥ > 1. At a large scale of the barrier
fluctuations or a large polaron effect such an inequality takes
place already at relatively moderate temperature

s 2B [T o) _E l_ﬂ}
W dye .°\/4(E+V)T°"p{ TV E, " T6E+)

(5.18)
Here
2 2
o Wy « (Dofl)a (5'19)
_AvodBl , _ 5 CBla
Y—4a (l)g ’ éB-4§ wawo-

The sum of two linear in T terms in the exponent has a
positive coeflicient. Thus, the transition probability rises ex-
ponentially both due to the polaron effect and due to the
barrier fluctuations. However, the temperature dependence
is different in these two cases. If the polaron effect is decisive,
we obtain the activation dependence which is well-known
within the small-radius polaron theory (see [26,27]). If the
interaction with the barrier fluctuations prevails, the law
changes. Now the exponent rises with temperature, follow-
ing the linear law. From the formal point of view, at a suf-
ficiently large value of the T/@p, ratio the fluctuation mech-
anism will always play the key role.

Thus, we see that in the case of an insulator the interaction
of the tunneling particle with the barrier fluctuations can be
of cardinal importance.

6. Quantura Diffusion of Muonium in KCl Crystal

The recently published very interesting works [2, 3] pres-
ent the results of investigation of the quantum diffusion of
muonium in KCl and NaCl crystals. The discovery of the
diffusion coefficient increase by 2.5 +3 orders of magnitude
with decreasing T, which supersede the exponential drop of
D(T) is, surely, most impressive. It was for the first time
that within one experiment the low-temperiture increase of
D(T) was observed on such a scale, as well as the passage
through the mimmum and the under-barrier character of
the motion at the high-temperature branch of the depend-
ence at T' > Ty, The appearance of a small preexponential
factor, as compared with the oscillation frequency of a pat-
ticle in a well w ~ 10" s=!, is a clear manifestation of the

latter. All that allows us to analyze the role of the interaction
with the barrier fluctuations by comparing the theoretical
and experimental results. Here we shall confine ourselves to
the results of the analysis for KCl (for details, see Ref. [28]).

At low temperature T < Ty, the diffusion coefficient is
determined by the expression (5.17), while the corresponding
lifetime in a cell has the value (A = 1)

8 43

™' 2 4D(T)/a* = g

(64)

(coefficient 4 is a result of a numerical calculation for a
simple cubic structure). It is precisely ~' that was deter-
mined in Refs. [2,3]. Within the limit T— 0 in (5.13) the
function A(w) ~ w?*® and, correspondingly,

Q) ~ T™+0 (6.2)

Two additional powers of T appear in the case of particle
tunneling between the absolutely equivalent sites, In the
NaCl structure the neighboring sites are not equivalent as
far as the interaction with phonons is considered and the
(2) factor must be omitted.

In Refs [2,3] an appreciably weaker dependence was ob-
served, as compared with (6.2). As it has been found out
[28], that is not a consequence of violation of the decisive
role played by the two-phonon interaction but is due to the
necessity of taking into account the actual phonon spectrum
of the crystal in (5.13). The calculations performed for KCl,
allowing for the experimentally determined g(w) function
[29] and the simplest form the vertex of the two-phonon
interaction
Icaﬂlz = )'th W Wp (6'3)
are shown in Fig. 1. At that, it was assumed that 4, ~ const.
At T — 0 the inverse lifetime goes out into a constant value
't =212 4. (6.4)
The transition from coherent regime (6.4) to incoherent one
(6.1) could be described by the interpolation formula

-1
1 _ Yo

= Tron (6.5)

T

The limiting behavior of the experimental curves at low T
allowed ., to be determined independently. It was obtained
do ~ 0.13 K (KCl). 6.6)
Thus, only vne fitting parameter £, was used which con-
trols the scale rather than temperature dependence of Q(T).

It is Jear from Fig. 1 that just after the minimum point
the experimental and theoretical results are rather close. The
latter correspond to the dependence D(T) ~ T *%, in ex-

penment [2] D ~ T ™. An analogous result was obtained
for NaCl.
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Fig. |

Low temperature behavior of the inverse lifetime in KCI. Experi-

mental*point are from Refs. [2,3). Fitting parameters for the the-
oretical curves are: 4y = 0.13 K, A, = 0.11

Considering the temperature region T 2 Tpi, We conserve
in (5.14) the one-phonon interaction only. After singling out
from (5.14) the two-phonon part (5.16), (5.17), (6.1) the ex-
pression for t=! can. be written in the form (¢ = 0)

o
i 4W =44} [ de@Er0rito ) 6.7)
-0

The sum of (6.5) and (6.7) describe the actual lifetime in a
unit cell,

To start with, we assume that the barrier fluctuations do
not play any role and we take B, ~ 0. The one-phonon
interaction vertex can be presented-in the form.

[Cal? = Aipny O (6.8)

where @y, is the maximum frequency of the phonon spec-
trum.

If we make use of the activation energy value E ~ 390 K,
found in Ref. [2], then, taking into account the actual pho-
non spectrum for KCl [29], we immediately determine the
A1 value from (5.19). This also allows us to find the polaron
exponent ¢(T) (5.9). As a result, all the values in (6.5) and
(6.7) turn out to be determined unambiguously. Now, if we
find ™! for the whole temperature range, we make sure that
there takes place a complete discrepancy between the ex-
perimental and calculated results for T' & Ty, The preex-
ponent in the activation dependence turns out to be three
orders of magnitude larger than the experimental value and
T, falls within the range of considerably lower T Such a
sharp discrepancy cannot be compensared for by a simple
redistribution of the parameters.

Let us now treat the opposite case when the barrier fluc-
tuations play the decisive role, and assume C, ~ 0. We shall
again make use of the simplest form for B,

6.9

105

i

10
~~
v-l
|
E 5

3 0
< 10 f
[ P
S /

102 1 | 1 PE | 1\wf ] ]
Temperature 10 50 100 300 K
Fig. 2

Temperature dependence of the invérse lifetime in KCl. Experi-
mental point are from Refs. [2,3). Fitting parameters for the the-
orctical curve are: 4o = 0.13 K, Apn = 0.1, 2 = 025

and, using the same g (w) function determine the value of
G(T) (5.10) and ¥ (t) (5.15). The resuits of the calculation,
making use of only one fitting parameters A, are presented
in Fig. 2. One can see that remarkable agreement takes place
between the experimental and theoretical results, including
the position of the minimum, the scale of 7 at T ~ Ty, and
the whole high-temperature behavior of t=!(T). The con-
trast between the both limiting cases is so pronounced that
there remains no doubt about the decisive role of the barrier
fluctuations for'the quantum diffusion of muonium in KCL

References

[11 Yu. Kagan and M. L. Klinger, Zh. Eksp. Teor, Phys. 70 (1976)
256 [Sov. Phys. JETP 43, 132 (1976)).
[2] R. F. Kiefl, R. Kadono, J. H. Brever, G. M. Luke, H. K. Yen,
M. Celio, and E. J. Ansaldo, Phys. Rev. Lett. 62, 792 (1989).
[31 R. Kadono, R. F. Kiefl, E. J. Ansaldo, J. H. Brewer, M. Celio,
S. R. Kreitzman, and C. M. Luke, Phys. Rev. Lett. 64, 665
(1990).
(4] Yu. Kagan and N. V. Prokofev, Zh. Eksp. Tcor. Phys. 90,
2176 (1986), [Sov. Phys.-JETP 63, 1276 (1986)].
[5] J. Kondo, Physica (B-+C) 84, 207 (1976).
[6] K. Vladar and A. Zawadowski, Phys. Rev. B 28, 1564, 1582,
1596 (1983).
[7] K. Vladar, G. T. Zimani, and A. Zawadowski, Phys. Rev. Lett.
56, 286 (1986).
[8] K. Vladar, A. Zawadowski, and G. T. Zimani, Phys. Rev. B
38, 2001, 2015 (1988).
[9] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher,
A. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).
[10] Yu. Kagan and N. V. Prokofev, Zh. Eksp. Teor. Phys. 96,
1473 (1989); [Sov. Phys.-JETP 69, 836 (1989)].
[11] P. W. Anderson, Phys. Rev. Lett. 18, 1049 (1967); Phys. Rev.
164, 552 (1967).
[12] P. Nozieres and C. T. deDominicis, Phys. Rev. 178, 1097
(1969).
[13] Yu Kagan and N. V. Prokofev, Zh. Eksp. Teor Phys. Pis’ma
45, 91 (1987); [Sov. Phys.-JETP Lett. 45, 114 (1987)].
[14] Yu. Kagan and N. V. Prokofev, Zh. Eksp. Teor. Phys. 96,
2209 (1989); [Sov. Phys-JETP 69, 1250 (1989)].
[15] N. I. Muskhelishvili, Singular Integral Equations, P. Noor-
dhoff Ltd., Groningen, The Netherlands 1953.



422

K.’Kondo: Tunneling in Metals as a Dissipative Quantum Process

-€16] ‘K. Yammada- and K. Yosida, Progr. Theor. Phys. 68, 1504
(1982).

[17] J. Kondo, Physica (B+C) 126, 377 (1984).

[18] K. Yamada, Progr. Theor. Phys. 72, 195 (1984).

[19] H. Grabert and U. Weiss, Phys. Rev. Lett. 54, 1605 (1985).

[20] M. P. A. Fisher and A. T. Dorsey, Phys. Rev. Lett. 54, 1609
(1985).

[21] K. Yamada, A. Sakurai, S. Miyazima, and H. S. Hwang,
Progr. Theor. Phys. 75, 1030 (1986).

[22] Y. Tanabe and K. Ohtaka, Phys. Rev. B 34, 3763 (1986).

23] Yu. Kagan and L. A..Maksimov, Zh. Eksp. Teor. Phys. 65,
622 (1973); [Sov. Phys.-JETP 38, 307 (1974)].

[24] Yu. Kagan and M. L Klinger, J. Phys. C7, 2791 (1974).

[25] Yu. Kagan and L. M. Maksimov, Zh. Eksp. Theor. Phys. 79,
1363 (1980); [Sov. Phys.-JETP 52, 688 (1980)]; Zh. Eksp.
Theor. Phys. 84, 792 (1983); [Sov. Phys.-JETP 57, 459 (1983)].

[26] J. Appel, Solid State Phys. 21, 193 (1968).

[27] C. P.Flynn and A. M. Stoncham, Phys. Rev. B, 3966 (1970).

{28] Yu. Kagan and N. V. Prokofev, Phys. Lett. A. 150, 320 (1990).

[29] H. Bilz and W. Kress, “Phonon. Dispersion Relations in In-
sulators”, Springer-Verlag, Berlin, Heidelberg, New York
1979.

Presented at the Discussion Meeting of the  E 7525

Deutsche Bunsen-Gesellschaft fiir Physi-

kalische Chemie “Rate Processes in Dis-

sipative Systems: 50 Years after Kramers”

in Tutzing, September 10—13, 1990

Tunneling in Metals as a Dissipative Quantum Process
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Diffusion | Metals [ Transport Properties | Tunneling

There are two characteristic energies for the proton in metals; the orbiting frequency within a site (hay)
and the tunneling integral between neighbouring sites (4). Since typically hwg is 1000 K and 4 less than
10 K, the temperature range defined by hwy > kT > 4 is experimentally accessible. This is peculiar to
the proton and proton isotopes. — Low-cnergy excitations of the metal electrons cannot follow instan-
taneously the orbiting motion of the proton in a single well. They are equal to those when the proton
potential is averaged over the proton wave function representing the orbiting motion. When the proton
tunnels to another site, the low-energy excitations must be rearranged to correspond to the new proton
position. Then the tunncling integral of the proton acquires a factor of the overlap integral between two
electronic wave functions corresponding to two proton positions. This integral turns out to be much
smaller than unity and depends on a power of the temperature when hwy > kT » 4. This power law is
a result of the non-adiabatic response of the metal clectrons to proton motion. Such a power law will
manifest itself in diffusion constant of the proton or proton isotopes.

1. Introduction

My talk is concerned with protons or positive muons
tunneling between interstitial sites in metals [1]. This is a
typical example of quantum processes in dissipative media.
In this case, the metal electrons constitute a dissipative sys-
tem. But my approach to this subject was motivated by an
observation of peculiar propertics of metal electrons. As you
know, the characteristic energy scale for metal electrons is
the Fermi energy, which is order of electron volts. But in
this system electron-hole pair excitations can have an ar-
bitrarily small energy. It is known that excitations with such
a small energy give rise to two important effects.

The first is dissipation. An example of this is the Korringa
relaxation of a spin placed in a metal. Its rate is proportional
to kT, which is a direct manifestation of dissipative nature
of the metal electrons. The second is infrared divergence. In
some cases, perturbation theory for problems of metals
breaks down due to vanishing excitation energy. A typical
example of this is the electrical resistivity due to spin scat-
tering, which is proportional to logkT. So, our concern is
what these effects result in for proton-tunneling in metals.

2. Protons in Metals [2]

We consider protons or positive muons in metals. These
particles occupy interstitial sites in metals. In general, there

Ber. Bunsenges. Phys. Chem. 95 ¢ 1991, No. 3

& VCH Verlugsyesellschaft mbH, 1 -6940 B einheim, 1991

are several energy levels for them in each site, Inelastic neu-
tron scattering experiments tell us that the level separation
in a single well is about 1000 K for the proton. These par-
ticles jump among interstitial sites and diffuse in metals. The
jump rate depends strongly on the temperature. At high
temperatures lattice vibration is important to understand
the jump rate. At low temperatures, however, the effect of
lattice vibration can be renormalized. So we will not con-
sider its effect explicitly. At low temperatures, the jump may
take place via tunneling between lowest levels of neigh-
bouring sites. We will study the effect of metal electrons on
such a tunneling.

Here, there are three relevant energies. The first is the
level separation for the proton in a single well, which is
denoted by hw,. The serond is the splitting of the lowest
levels due to tunneling, denoted by 4. The third is the Fermi
energy of the electrons, denoted by ¢. These are generally
related by

e > hwy > 4. M

3. Single-Well Problem

First we consider the proton moving within a single well.
The proton wave function will be denoted by 4, (R - Ry)
= 0,1,2,...}, where R is the proton coordinate and R,

Y0US-9021,91,U303-0422 8 3.50 +.25,0
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the center coordinate of the well. We expect that y, is close
16 the harmonic-wave function at least for small n.

We-take a jellium_modél for the electrons. The electron
wave-function is denoted. by &, (ry,rs,...), Where ry,ry,... are
the electron coordinates. In particular, &, is the Fermi
sphere-state, where all the states within the Fermi sphere
are occupied. Py ;- is the state obtained from @, by exciting
the electron k to an empty state &',

If-the interaction between.the proton and the.electrons
were absent,.the total wave function would be the product
1 P.. As an.interaction we take a short-range potential,
which is denoted by

% Vin=R). @

We consider two extreme approximations for this single-
wéll problem [3].

3.1. Adiabatic Approximation

In this approximation we take the total wave functions
as

¥ = xo(R—=Rp)* @ (riur2..) s €]

where @3 is the electron wave function which is obtained
when the proton is fixed at R. Eq. (3) implies that the elec-
trons follow the proton instantaneously.

Perturbation theory tells us that & is written in the first-
order of V as

2 VO ei(l\ —k)R

P = P - oyl (EVN “

where the summation is over k& and & with the restriction
that k is inside of the Fermi sphere and &’ outside of it. ¥
is the Fourier transform of V(r), which we assume is inde-
pendent of the wave number. ¢ and &’ stand for & and &-.
These abbreviations will also be used in later parts of this
paper. The phase factor in (4) takes-accounts of the fact that
the proton is fixed at R.

This wave function would be valid, if the electrons moved
much faster than the proton does. This is not the case, how-
ever. If one takes the average of the total energy with ¥,
one finds that it is logarithmically divergent. This divergence
comes from excitations with vanishing energy. The electrons
are slow due to the presence of such excitations and cannot
follow the proton instantaneously. In order to remove such
a divergence [ used an anti-adiabatic scheme. On the other
hand Kagan and Prokof’ev took account of higher-order
terms of the adiabatic scheme [4]. Their approach is more
systematic. However, it turned out that the essential physics
had already been involved in our scheme.

3.2, Anti-Adiabatic Approximation

We then consider the other extreme case, where the elec-
trons feel a potential which is averaged over the proton wave
function:

% V.~ R) =X [ V(r~R)|10(R ~ RI* @R. )

The electron wave function in this potential will-be written
as

Z 70 ei(k —k)-Ry

Pry = B0 - g'—e

it + oev s ©

where V, is the Fourier transform of 7(r) whose wave num-
ber dependence is also neglected. The total wave function is
written as

¥ = %o(R = Rp) Pr,(r,r2...) . ™

This wave function no longer involves an infrared diver-
gence. Instead it turned out that it involved a large non-
adiabatic effect.

4, Two-Well Problem

In order to see what effect Eq. (7) involves, we will now
consider a two-well problem, where there are two total wave
functions corresponding to the proton in the left well (cen-
tered at R,) and in the right well (centered at Rp).

4.1. Adiabatic Approximation
In this approximation, the two wave functions are

Yo = 1o(R—Rp) P, ®)
Y5 = yo(R—Rp) Pz . ©

The effective tunneling integral in this case will be written
as

4o = | ¥ Huma(R) ¥a R &1 s, (10)
where Hyyyq(R) is some Hamiltonian which causes proton-
tunneling from y(R — Ry) to xo{R — Rg) or vice versa. With
the use of (8) and (9) in (10), one finds that the integration
over the electron coordinates gives us unity, because of the

normalization of @g. So, one finds that 4.4 is equal to the
bare tunneling integral 4:

Ag = [ 13(R = Rg) Hunnt (R) 70(R — Ry) d°R
=4.

(1)

In this case the electrons have no effect on tunneling of the
proton,

4.2. Anti-Adiabatic Approximation

In this case, the two wave functions are
Ya = 1o(R—Ry) P, (ry,12...) (12

Y5 = %o(R— Rp)* Pp, (r1,12...) . (13)
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Theé effective tunneling integral is now written as.

Ag= 4] dE Bp, d°ry &ry. (14)

The ovqﬂ%p integral in,the above expression is calculated
from (6) with proper normalizution as

] - ei(k-k')-(R»\-Rn)]v
(e’ —¢)?

One finds that the second term is logarithmically divergent
because of excitations with vanishing denominators. This
means that tlie non-adiabatic effect implied by (12) and (13)
is quite farge.

This logarithmic divergence is replaced by a logT term
at finite temperatures. A finite-temperature version of Eq.
(15) is calculated as [5]

1 — z 1Vl L

F o (15)

sin®kra D
1—2|Vo|292(1 - k,%an >1og—k?+ (16)

where g is the density of electron states at ¢, a the distance
between R, and Ry, D the cut-off energy. for the electron
which is of the ordeér of eg. This is logarithmically divergent
as T—0. Calculation of higher-order terms tells-us that [5]

kT\K :
dg = 4 (—D—) , (1
where K is defined by
io2
K =2| 2ot (1 _ Sin kea ) . (18)
kia

Since kT/D <1 in general, the non-udiabatic effect incor-
porated in this anti-adiabatit-scheme is large, whereas the
adiabatic scheme had no effect on proton-tunneling.

The correct answer will be in between. We will see, how-
ever, that this non-adiabatic effect does exist in a correct
theory. Eq. (17) is still valid only with replacement of D by
haw, as Kagan and Prokof’ev first pointed out [4].

5. Systematic Perturbation Theory for Single-Well Problem

To find a correct answer, we write the wave function for
the single well problem as

Ya= COOZO(R) Dy + % Cna 1 (R) D 19

where we set R = 0 for simplicity. In the first term both
the electrons and the proton are in the ground states. In the
second term, both or one of them may be excited. A per-
turbation theory tells us that the first-order term is written
as

© Vol 7%(R') 2o(R) €% >R’
-r Y

n=90 E,,—Eo+8’-—8

In(R) Peesie (20)

with k = k—k’, where the first summation is over k and
k' with the restriction-mentioned before.

We first fix k& and &’ and consider the n summation. We
set. &'~ ¢ = Nhwy We first consider the case where N is a
large integer. Then the terms with n larger than N(E, — E,
> Nhw,) may be neglected because the denominators of
those terms-are large. (Here wé assume. harmonic functions
for the proton states) But for the terms with n < N, the
proton energy may be neglected, Then the n summation of
(20) may-be approximated by

N
I, P[RR pR) ¢ ¥ PR B (R), @1

We now expand the exponential as

§ GxR)”

eix-R' ~
mmo m!

If one takes M as an integer much larger than k- R’, the
exponential can be approximated by the right hand side.
Using this expansion in (21), one finds that the integral over
R’ will vanish for n > m, when ,'s are harmonic wave func-
tions. This fact enables us to distinguish two cases.

Casel. N> M

The summation over n in (21) can be extended to oo,
because the added terms vanish. Then one can make use of
the completeness theorem

<

Z 1(R)x(R) = 8 (R—-R),

nmo0
and find that (21) becomes

Ve M (ik-R)"
g —¢ XO(R)”.Z:‘-o m!

~ Vo . ix:R

From the above derivation one sees this result is valid when

ST 5 R )

Case2. N< M

In this case, among the terms with n =0 to N, only the
term with n =0 will be important:

Vollnles X R

Y —¢ #0(R)

VO ei(k —=k)Ra

=———; —nR).

This result also applies to the case where ¢ — ¢ < haw,.
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Putting all these together, one can write the correct wave
function for the single-well problem to the first-order of V
as

¥\ = (Pk, + B) %o(R—Ra). 23

where

o 7. ailk=k)<Ra

’¢kl\ = ¢0 -— EL—V'?"?m—‘¢k__k. + . ’ (24)
A ik =k)R:

o = — EH ﬁ%—_—;— Byt + ooe 25)

In the low frequency part @, the summation is over k and
k' with the restriction

Nhwy > ge—g > 0.

In the high frequency part @K, the restriction is
e—8& > Nhoy,

N is given by

1 KR <1
N"{N-R K'R>1° (26)
A typical magnitude of & is kp: the Fermi wave number,
whereas R may be of the order of the radius of the proton
wave function. Thus we see that the correct wave function
is a hybrid of the adiabatic and anti-adiabatic wave func-
tions, This was first pointed out by Kagan and Prokof’ev

(4.

6. Effective Tunneling Integral

Having found a correct wave function for the single-well
problem, we now consider the effective tunneling integral
(10), where

¥a = (P, + OF)  20(R—R)), @7
¥ = (®%, + BX) 70(R—Ry). (28)

The renormalization factor is solely contributed by the low
frequency parts:

dg = A [ OF 0f, d*r d'ry.... (29)

The high frequency parts follow the proton instantaneously
and do not contribute to renormalization. The above over-
lap integral is calculated as

L i
(& —e+ 4)?

. (30)

Here, we have put 4 in the denominator. We note that 4
should be included in the unperturbed energy, because we
are doing perturbation expansion in terms of V.

We note that the integration over R in (10) is mainly
contributed from the region where xo(R—R,) and
% (R = Rg) overlap. In this region |R — R,| = a/2, where a
is the jump distance. Then (26) may be replaced by

] kea2 < 1
N= {kpa/z ka2 > 1" (31)
Since kra is usually larger than unity (~3.5 for Cu metal),
we take the second case ‘of (31). The restriction L in (30) is
now expressed by [6]

(kra/2)hwy > &—& > 0, (32)
s0 the cut-off B is now defined by
B =:(kpa/2)hwy . (33)

With the cut-off-thus defined, we find that (30) is calculated
as

1- Klog—-f:— + o

-8

Finally we have

A‘h‘
A,ﬂ=d'(i) .

Now 1 will explain what (34) implies. When the proton is in
the left well, the electrons are pushed to it and an electron
cloud will be formed around it. When it tunnels to the right
well, the electron wave function must be rearranged so as
to correspond to the new proton position. Excitations with
energy larger than B can follow the proton instantaneously,
so they do not contribute to the non-adiabatic effect. Now
the proton goes back to the left well within a time ~h/4.
So excitations with energy less than 4 do not have enough
time to rearrange the wave function, so they do not con-
tribute to the non-adiabatic effect either. Only those exci-
tations with energy between 4 and B contribute to it. This
is what (34) implies.

I will mention two corrections to (34). The first is self-
consistency correction due to Yamada et al. [7]. Actually
the proton goes back to the original site within a time ~hf
4., because 4.y represents the real speed of tunneling..So
we raust have

- Aeﬂ)"'
dg=4 (3

(34)

instead of (34). Solving this equation for 4., one has

(35)

K
- A\——
= J=|r-K
dg=4 A(B) )
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where 4 is the characteristic energy of our problem. A sum
rule“tells. us that K < 1/2 for a singly charged particle in
metals [8]. Thus there issno possibility of self-trapping in
this case.

The second correction is due to a finite temperature. The
above result is for the ground state or for kT < 4. When
B » kT > 4, excitations with energy up to kT are not like
those of a degenerate Fermi system, and so do not contribute
to the non-adiabatic effect. Thus the low-frequency cut-off
must’be kT

kT\X

A¢“=A-(—) B> kT>» 1. (36)

B

Our main result is this power law of the effective tunneling
integral,

7. Connection with Experiments

I will discuss the possibility of observing this power law,
For this purpose the temperature range defined by the in-
equality in (36) must be experimentally accessible. For the
proton ha, is about 1000 K and B is of the same order, still
4 may be as small as less than 10 K. In this case the above
criterion is satisfied, This is also the case for the positive
muon and the other isotopes of the proton. For the positron,
on the other hand, both hw, and 4 may be more than
electron volts, For heavier atoms, on the contrary, hw, may
be less than 1 K and 4 may be much smaller. In this sense
the proton and its isotopes are peculier.

Up to this point I have considered the effective tunneling
integral, which gives the level splitting. The non-adigbatic
effect involved in it is a-manifestation of infrared divergence
associated with metal electrons. If the effect of the electrons
is only to renormalize-the tunneling integral, the proton
energy level would have-a vanishing width., Actually the
electrons cause dissipation and give rise to the level broad-
ening. The mechanism of the broademag is essentially equal
to that of the Korringa relaxation. It is shown that the
broadening is given by [9]
I' = nKkT. (37)
When I' € 4., the proton will go back and forth many times
between the two sites before the motion is damped (coherent
case). When I" > A, the proton will sit in a site for a long
time before it tunnels to the other site (overdamped case).

The cross-over. occurs when I' = 4.5 The cross-over tem-
perature is given by

kT, ~ 7, (38)

with the assumption nK ~ 1.
In the overdamped case (kT > 4), the jump rate to the
neighbouring site is given by

A
7 o S
n T (39

which is proportional to T>=!, Such a power law of the
diffusion constant was observed for the positive muon in Cu
and Al [10]. A cross-over from the overdamped to coherent
case was observed for the proton in the Nb—O, system, as
the temperature is lowered from 10 K to 1 K [11].

I conclusion we have shown that tunneling of light par-
ticles in metals is influenced by the metal electrons very
mugch. This is due to the fact that excitations of the electrons
in metals can have an arbitrarily small energy.
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Quantum Coherence in Rate Processes
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The quantum dissipative dynamics of a particle which tunnels through the barrier of a double well potential

and is coupled to an Ohmic heat bath.is studied. Exact formal expressions for correlation functions are

presented and examined. Attention is focused on the region in which coherence effects are important, and

on the algebraic long-time tails at zero temperature. Coherence effects in the dissipative quantum transport
of a particle in a tight-binding lattice are also investigated.

1, Introduction

The decay of metastable state is a very common phenom-
enon and plays a central role in physical and chemical sci-
ences. At high temperatures the decay is thermally activated,
and the rate of classical escape over the potential barrier
follows the Arrhenius law [1]. As the temperature is low-
ered, thermal fluctuations die out exponentially fast so that
at very low temperatures the metastable state can only decay
via quantum tunneling. In recent years, it has become clear
both on the experimental and theoretical side that quantum
tunneling is strongly affected by the frictional influence of
the environment, this being the impetus behind the intense
increase in activity in this field. Dissipation was found to
cause novel features such as dissipative phase transitions
[2], exponential suppression of tunneling rates at zero tem-
peratures [3], and qualitative change of their behavior at
finite temperatures [4). The theoretical predictions for the
temperature and damping dependence of tunneling rates in
macroscopic quantum tunneling (MQT) have been verified
precisely, e.g., in experiments on the decay of the zero-volt-
age state of a Josephson junction [5].

It has been pointed out by Kondo that the dynamics of
tunneling systems in metals are strongly affected by the in-
teraction with conduction electrons [6]. The nonadiabatic
effect of the electronic screening cloud causes anomalous
temperature dependence, such as the increase of the diffusion
coefficient with decreasing temperature, a behavior first ob-
served for muon diffusion in aluminum and copper. In this
region, the defect tunnels incoherently to a neighboring site.
As the temperature is decreased quantum coherence between
many sites becomes increasingly important. The defect be-
comes delocalized with a wave function extending over sev-
eral interstitial sites. In this contribution we focus our at-
tention to the transition from incoherent to coherent tun-
neling in the presence of a fermionic environment.

The simplest situation for quantum coherence is the de-
localization of a particle in a double well potential. At suf-
ficiently low temperatures, excitations in the two wells can
be neglected, and the double well can be truncated to a two-
state system formed by two energetically split tunneling ei-

*) On leave from Dipertimento di Fisica, CISM, Universitd di
Genova, Italy.

Ber. Bunsenges. Phys. Chem. 95 /1991, Nu. 3

& VCH Verlugsgesellschaft mbH, W -6940 W ewheun, 1954

genstates. In the following we provide a unified view of the
two-state dynamics under the influence of conduction elec-
trons. Special attention is given to the crossover from in-
coherent to coherent tunneling.and to the behavior at very
low temperatures where the presence or absence of system-
bath correlations in the initial state gives qualitative differ-
ences in the evolution of the system at long times. The equi-
librium correlation function shows algebraic long-time tails
at zero temperature, and the system approaches thermal
equilibrium always faster for a factorizing initial state. Cor-
respondingly, the spectral properties of the system at low
frequencies are qualitatively influenced by correlations in the
initial state, The important influence of conduction electrons
on defect tunneling has been verified in neutron-spectros-
copy experiments on hydrogen trapped by oxygen in nio-
bium [7]. We also consider the crossover from incoherent
to coherent quantum transport of light interstitials in a one-
dimensional tight-binding lattice in the presence of conduc-
tion electrons.

The functional integral method provides a unified ap-
proach to the dynamics of two-state and multi-state systems
in the presence of dissipative influences. In Section 2 we
briefly review this method and present exact formal expres-
sions for the two-state system. Section 3 is devoted to the
discussion of the dynamics both in the region of incoherence
and coherence. In Section 4 we study coherence effects in
the quantum transport of a particle in a multi-state system.

2. Exact Formal Expressions For The Two-state Dynamics

We consider a quantum particle interacting with conduc-
tion electrons and tunneling in a double well with bias en-
ergy he and with tunneling matrix element .4,. We consider
the case where the characteristic energy scales of the prob-
lem are such that

Vo> hwo > hdy. he, kg T. 2.1)

Here, ¥, is the barrier height and haw, is the energy of ex-
citation in a single well. The dynamics of the isolated system
is then simply described by the pseudospin Hamiltonian

I
Ho = — ?I(Aoox+wz), (22)

where the ¢’s are the Pauli matrices.

VWI-YUs 1, Y1, USU3U427 § 35U +.25,U
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In the temperature region of interest the influence of the
conduction electrons is governed by gross features such as
the density of low énergy excitations off the Fermi surface.
The fermionic bath can be mapped onto a bosonic bath
with an-appropriately chosen spectral density of the cou-
pling strength. The simpler spin-boson Hamiltonian is

1 1
H = H, + Y [—'— + —mlwl xt - _cixlqooz], (2.3)
2"1 2

where the parameter g, represents the distance between the
two wells of the original problem. The effects of the bosons
are«in the spectral function [8]

J(o) = 24)

i ll(l)

and the equivalence with a fermionic bath holds for the
specific form
J() = qw e~ = 2rhK/q}) w e~/ (2.5)
where we have chosen an exponential cut-off. The spectral
density (2.5) is known to cause Ohmic dissipation in the
classical limit [3]. Here, 5 is the phenomenological friction
coeflicient, while K is a characteristic dimensionless damping
strength introduced by Kondo [6]. The parameter K is iden-
tical to the parameter o introduced by Leggett et al. [8].
The cut-off frequency of the fermions is of the order of the
Fermi energy e > hwo. However, since we have truncated
here the original potential problem to a two-state problem,
the spectral density of the environment is effectively cut off
at a frequency o, which is of the order of w, [8,9]. The
high-frequency modes (w > o) affect the tunneling process
only by a dressing factor [8]. In the following, 4 denotes
the matrix element renormalized by this factor. The damping
strength K can be expressed in terms of the original para-
meters characterizing the Fermi bath and the coupling [10].
There follows from a sum rule that K is restricted to the
range 0 < K < 1/2.

The dynamic quantities of interest are the functions (f =
1/kgT)

P@t) = (o, ()2,

CO) = 5 <0:06(0) + 6.0)0.0035.

2.6)

The function P(t) describes the expectation value of o, at
time ¢ > 0 supposing that at all times ¢ < 0 the system has
been held in (say) the state 6, = +1, and the environment
1s assumed to have come into thermal equilibrium with it.
The system is let go at ¢ = 0, and the system plus environ-
ment is allowed to evolve accurding to the full Hamiltonian
(2.3). The conditional expectation value P(t) is the relevant
quantity 1n the macroscopic quantum coherence (MQC)
problem. The exact formal svlution for P() based on the
Feynman-Vernon influence functional method [11] has

been given Refs. [12]-and [8]. The other dynamical quantity
is the symmetrized thermal equilibrium correlation function.
The Fourier transform of C(¢) is directly related to the dy-
namic structure factor for neutron scattering [13,14].
Within the real-time path integral approach the exact formal
solution of C(t) has been discussed in Ref. [15]. Let us briefly
sketch the derivation. The functions C(t) and P(t) are related
to the joint probability P(s,t; ¢,0; 6", %) according to

c)= lim X  [P(e,550,0;0,t0)

fo~r =0 aw

+ P(—o0,t;—0,0;0,t)] —1, (2.7)

P@) =2 lim P(+1,t;0= +1, t0<1<0)—1

{g=> =00

where in the latter relation the system is constrained to the
state ¢ = +1 of ¢, for negative times 7 in the region
to < 7 5 0. As the heat bath modes are represented by Gaus-
sian integrals in the functional integral approach, they can
be evaluated exactly. One finds that the environmental in-
fluences are described by a complex interaction S(z) + iR(17)
between each pair of tunneling transitions. The pair poten-
tial depends on the spectral density and on temperature
through the relations

o

_ ‘10 ( _
S(r) = Id = —=(1 coswr)coth( )

(2.8)
R() lIo Idw (2) sinwr,

which for the special choice (2.5) and for w.t > 1 assume
the form

St) + iR() = K[Zln[ hBw: G h(m>] + in]. (29)

The equivalence of the bosonic bath with the special choice
(2.5) with a fermionic bath follows from the fact that the
influence of conduction electrons indeed leads to a pair in-
teraction of the form (2.9). (See, e.g., Ref. [6]).

Following Ref. [8] it is convenient to formulate the ex-
pression for the joint probability in terms of a single path
integral over the four states of the reduced density matrix.
The periods t; < T < t;41, in which the system is in a
diagonal state, are called sojourns, and the periods t5;; <
T < by, in which the system is in a nondiagonal state, are
called blips. There are two Kinds of sojourns, and the j'th
sojourn will be labelled by 4, = +1(, = —1)il the system
is in the RR(LL) diagonal state. Similarly, there are two
kinds of blips, and we shall assign the label £, = +1 (¢ =

- 1) to the j'th blip, if the system is in the nondiagonal state
RL(LR). Fur later convenience we introduce the blip lengths
ty,—, and sojourn lengths s, = t;,,, — ¢,

It i straightforward to write down the various factors
constituting the path integral expression. The amplitude per
unit time to switch frum a diagonal to 4 nondiagonal state

Y=l =
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-(or vice versa) is +i4/2. The amplitude to stay.in a sojourn

is unity, while the amplitude to.stay in the j’th blip with
label £; and length 7;is exp(ie¢;t;). It is convenient to include
this factor into the phase of-the influence functional. If we
define:

Sk =‘S(ti - 4); (2.10)

Ay = SZj:ZL—l + Sojt,2k — S22 — Sy -1 5

the influence functional for n blips at negative times and in
blips at positive times (inodified by the bias factors) may be
written £, , = G, Hn n, Where

] myn J=1
G =:€Xp {— ng Sap2ym1 = ;gz ka f}ékAjk} ;o
o ‘ v (2.11)
H, . = exp {i E! &ler+ nKx,_lj} .
It:is obvious from (2.11) with (2.10) that the blips may be
viewed as neutral: fairs of charges +1 (dipoles). The term
Ay represents thé .ateraction energy of two blips, and be-
cause it is multiplit by the factor £;&; in (2.11) blips can both
attract and repel one another. For the time ordered inte-

grations over the flip times ¢ we introduce the compact
notation

as

[} [ M 0 3]
IDm.n {tj} = .‘.dt2n+2m " .[ dton Idt2n o I dty. (212)
fo 0 0 to 1o

Summing over all possible arrangements of blips and so-
journs we find for the joint probability the expression

, o K AZ nin
P(o,t;0,0;0'ty) = mX_;o ngo(——a—)

2.13)
]

N Dl"’l't 2 G.Il” Z H"l'l‘

.{ A} 1 I 7 S

The sum over arrangements {£,} and {y,} extends over the
possible values +1 of the & and z, (j = 1,2,...,m+n). The
double prime in {)}” is to indicate the constraint yo = 0",
An = Jm+n = 0. Next, the y-sum in (2.13) can be carried out
straightforwardly. In the end we find from (2.7) with (2.13)
the result

P@) = P()+ P-(),
Ct) = PO+ 00,
where Pi(t) = 1+ P,.(¢) and

(214

t

Py = é I Dot} X, 4G, (215)
o) = — lim io § (tan(m K))?
toms o =1 2= 2.16)

t
: I Dm,n {tj} Z él En +1Ai(r;‘:12n Gm.n )
I {gl}
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with
— A2 m m
A'("'*') - (M—) Ccos <8 Z é]‘ﬁ) s
2 i=t 2.17)

— A2 K\m m
AL =( 4 0205‘"5 ) sin (a}Zi f,'tj).

The expressions (2.14)—(2.16) represent the exact formal so-
lution in the form of a series in 42 for P(¢t) and C(¢). The
function P,(t) (P~ () is the symmetric (antisymmetric) con-
tribution of P(t) under the inversion of the bias ¢ — —e.

The assumption of a factorizing system-bath initial con-
dition at t=0 corresponds to the neglect of interactions
between the positive and negative time parts in (2.16). In
this approximation we have C(t) = C®(¢), where
CO(t) = Py(t) + PoP-(1), (2:18)
and where P, = P_(t— o0) is the equilibrium value of P(¢),
Hence in this approximation C(t) is completely determined
by the components of P(t).

In recent theoretical studies [13,14,16] the structure fac-
tor for neutron scattering has been calculated from the
Fourier transform of C"(z). Below it will be discussed that
the low-frequency behavior of the structure factor is modi-
fied drastically at low temperatures, when system-bath cor-
relations in the initial state are taken into account. Corre-
spondingly, the long-time behavior of C(f) at 7= 0 changes
qualitatively in the presence of the correlations in the initial
state.

3. Dynamic Properties

Despite its formidable appearance, the above formal ex-
pressions for P(t) and C(f) can be summed in certain limits
by analytic methods. This is the subject of this Section, It is
important to note that much progress has been made also
very recently in the numerical path integral simulation of
similar expressions by Monte Carlo methods in conjunction
with a stationary phase filtering method [17].

3.1. Noninteracting-blip Approximation

When the interblip correlations 4y are neglected, the
terms of the series (2.15) and (2.16) are in the form of a
convolution and the Laplace transforms P(2) and C(}) can
be summed to [12, 18, 8, 19]

P() = B®+P_(,

3.1)
C(}) = Fs(;)+ Ijooﬁ—()-)a
where P, = tanh(hf¢/2), and
P = !
ST AR [Z0D)+F 2R (32)

P_() = - tan(mK) [Z(24) - Z(2)] Pi(D/212) .
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Hére, iy = Atié The self-energy Z(4) is given by the
expreéssion

hﬁﬁ‘cxl‘—ZK 1
In ) K+apaar 0P

() = Ac( (33

where g(1) = T(1 + K+ hpi2n)/I (1 — K+ hfAf2xn) and
where'I'(z)is the gamma function.’Here, we have introduced
the effective.zero.temperature tunneling splitting [12]

Kl(i~K)
4, =4 (%) [cos/mK)[(1—2K)]"=20) (34)

<

The behavior of P(t) based on these expressions has been
studied in Refs. [12], [18], [8], and [19]. The corresponding
propertics of the neutron scattering function
jlw) = ReC(A=iw) (3.5)
are discussed in Refs. [13], [14] and [16].

Let us examine the self-consistency of the noninteracting-
blip approximation (NIBA). It is obvious that for fairly high

temperatures the pair interaction S(r) in (2.9) may be ap-
proximated by

() = 2K In(hpod/2n) + 2nKe/hp . (3.6)

With this choice the interblip interactions 4 cancel out,
and we end up with the expressions (3.1) with (3.2) where
the self-energy Z(2) is in the form (3.3) with the factor
g(%) = g(A =0). Thus, the self-consistency condition of the
NIBA is |2 | <€ 2, which in the relevant frequency range
corresponds to temperatures T'> Ty, where ky Ty = h(4?
+ £%)" In the limit g(2) = g(4 = 0), the functions P(%) and
C(%) have apart from a static pole at 2 =0 three dynamic
poles determined by a cubic equation with real coefficients.
The trajectories of these poles and the corresponding be-
havior of P(t) have been discussed in Ref. [19].

For a symmetric system (¢ =0), the functions P(f) and
C(t) are the same in the NIBA, and, for k3T > h4,, the
Laplace transform P(2) has two poles which are determined
by a quadratic equation, as follows from (3.2) with (3.3) and
g(A) — g(A=0). For X < 1/2 the poles are complex conju-
gate to each other for T < T*(K), and real for T > T*(K).
The crossover temperature T*(K) separates.the coherence
region in which the systein shows damped oscillations from
incoherence. The corresponding phase diagram has been
discussed in Refs. [20,19,8]. A slightly different definition
of the phase separation line, namely that the scattering func-
tion j(w) is double peaked below T*(K) and single peaked
above I'*(K) has been considered in Ref. [13]. For the lim-
iting value K = 1,2 one finds T% = hd,, (kgn), while for
K <1 there holds I'* = hd, (Kkgn). At temperatures
T » T*(K) one finds incoherent reluxation P() = exp( - ,t)
with a rate

. [(K) (2mkeT X~

V= r(i—K)( 7, ) -
Vs 1 (nk,,T)”-' 42

T2 TK+12)\ ho, w’

which for K < 1/2 increases with decreasing temperature.
The high temperature behavior 72X~ was discussed first by
Konde:[21,6].

3.2. Weak Damping Case

The case K <1 is especially interesting, since for defect
tunneling in metals K was found to be very small, namely
near K = 0.05 [7]. Since the blips can both attract and repel
one another, one finds that for a symmetric system (¢ = 0),
the effect of the interblip interactions is of order X? while
the intrablip interactions give nontrivial effects of order K.
Hence, the NIBA is a systematic weak-coupling ap-
proximation for a symmetric system down to T'=0 (except
for extremely long times, as discussed below). For asym-
metric two-state systems the effect of the interblip interac-
tions contributes to the order K at temperatures T’ < T, so
that the NIBA is inadequate in this case. A systematic study
of the effect of the interblip correlations in linear order in
K is given in Ref. [16]. In the remainder of this Section we
restrict our attention to the symmetric case (¢ = 0).

In the region T < T*(K) the system shows damped os-
cillations with frequency Q and damping rate y. At very low
temperatures, 7 < T*(K), they are given by

QT) = hd.{1 + K[Rep(hd/2nkyT)

—In(hd,/2nks T)1}, (3.8)

?(T) = mKj2)hd.coth(hd 2k T),

where p(z) is the digamma function. Correspondingly, the
scattering function has two Lorentzians centered at w =
+Q(T) with linewidth 2y(T).

At temperatures in the range Ty & T < T* the formulas
(3.8) smoothly map onto the solutions of the quadratic equa-
tion discussed above. Near T= T* the two Lorentzians
merge into another, while at temperature 7> T* there is
only a single quasielastic peak centered at w = 0 with line-
width 2y(T') where v is given by (3.7).

3.3. Long-time Behavior of P(7) and C(r)

The NIBA gives the asymptotic behavior both of P(f) and
C(¢) qualitatively wrong at low temperatures. In the absence
of a bias the functions P(t) and C"(t) are the same, and
within the NIBA at T =0, they are given in terms of a
Mittag-Leffler function [18], which decays asymptotically
with the power law ¢t *" ¥ The asymptotic behavior of
P() and of C(¢) is changed qualitatively by the interblip
correlativns. Regarding P(t), the quantitative calculation of
the effect of the interblip interactions s very difficult since
all frequency scales are coupled together, as is well-known
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from the Kondo problem. In the first step, the correlations
lead to irreducible sojourns which are effectively narrow. In
the next step an irreducible blip which has inside an arbi-
trary number of irreducible sojourns is:considered. By it-
erating this procedure we then go to longer and longer time
scales. In.the end-we find that P(J) is regular at the origin
[22]. Hence, P(t) shows in fact at T=0 not algebraic, but
exponential decay, as t— co.

On the other hand, the equilibrium correlation function
decays algebraically at zero temperature. The algebraic
long-time tails of C(t) arise from the correlations between
the positive and ncgative time parts in the function G, =
Gp.n (T =0) defined in (2.11). As t— o0, the leading contri-
bution under the integral in (2.16) is

A0 G % G GY AGH AL

-(1 - Z": '"i"'i H&yn §o(t)>,

Jut A mpok

(39)

where So(t) = 2K In(wt) and where GQ 4§ and GQ ALY
are the interaction factors at zero temperature in the positive
and negative time parts, respectively. With the use of (3.9)
one finds in the end
C) = he)*So(0), (3.10)
where we have identified (0P, /0he)|.~o With twice the static
susceptibility yo at T"=0.

Inserting the above zero temperature expression Sy (¢) for

the pair interaction we finally get the algebraic long time
behavior [23]

C(t—c0) = —2K(2hzo)2-t12-. 3.11)

The behavior (3.11) is exact for K < 1, From (3.11) we may
also infer the behavior in frequency space near @ = 0. We
find for the scattering function (3.5)
Jlw—0) = 2nK(Q2hyo)|w]. (3.12)
This relation is analogous to a relation that has been proven
by Shiba [24] for the general Anderson model. It is inter-
esting to note that the formula (3.12) holds also in the pres-
ence of a bias, if we identify 3, with the nonlinear suscep-
tibility at zero temperature.

We conclude this Section with the remark that recently
the functions C(¢t) and P(t) have been determined exactly in

the entire (t,¢, T)-parameter space for the special value K =
1/2 [15].

4. Quantum Coherence in the Dissipative Multi-state
System

In this Section we deal with coherence effects in the quan-
tum transport of a particle in a onedimensional tight-bind-
ing lattice with spacing qo. This may be looked upon as a
somewhat crude model for diffusion of interstitials like pos-

itive muons.or protons in metals [25], and for the dynamics
of the phase of a resistively shunted single Josephson junc-
tion in the extreme quantum limit [26,27]. The diagonal
elements of the reduced density matrix are the occupation
probabilities P, (¢) of the n’th well with the initial condition
P,(t=0) = d,p. In the tight binding limit each transition
between system states is associated with an amplitude
+i4/2 per unit time. We shall assume that the environ-
mental coupling is of the form (2.3)—(2.5) so that the com-
plex interaction between any pair of transitions is again
given by (2.9). An exact formal expression for P, (¢) which is
in the form of a power series in 4* has been derived in Ref.
[28]. It may be written in the form

PO = I (-0

(4.1)
t
) Dpot Z sz H,,
£ oft} &, On .
where
2m }il 2an
G, = exp g’z Z &Sy —t) - 18}_2 f;tj]a “2)
2:&-—1 2£1
Hm = eXp [”tK Ko Zk}"k'H 6}]'

The sum over arrangements {&;} and {y,} extends over the
possible values 41 of the &, and y,(j = 1,2,...,2m), and the
prime denotes that each arrangement obeys the constraints

2m 2m

El u=2n, 1-2-:| §=0.

4.3)
Further, he is the potential drop between neighboring wells
provided by the external force F = he/qo. It is convenient
to introduce the generating functional

+ 00

ZA0) = “Z

—

@Adon P.(). 4.4)

Now, the {;,}’-sum can be done explicitly, and moments
{q¥ () of P,(t) are obtained by differentiating N times the
function Z(4,t) with respect to A at 2 =0. One then finds

G0 = qf Zl (=)=t g2
" (4.5)

*) Dot l(»lxv)Gm-
g .0{1}{%,“

The coefficients of the first and second moment are

s 2m=1

a» = .;_ jl;ll sin(mKgym),

1 2m—1
@ —
W = lgl

&

4.6)

2m—1
cos(nKg) Il sin(mKg;n),
J=L %l
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where:we have introduced the off-diagonal measure

j 2m
gm=—L &= YR @7

.Eq.(4.5) is the €xact formal expression for the time evolution
of a particle in a tilted tight-binding lattice in the presence
of Ohmic dissipation.

At high temperatures, the particle tunnels incoherently
from- well to well. This particular case of the dynamics can
be described by master equations for the probabilities P, (¢)
[29,30]. It is the case, where the density matrix after each
pair of transitions is again in a diagonal state, In the above
it formally corresponds to restricting the sum over paths by
the condition |g;,| < 1 for all j and m. In this limit the
nonlinear mobility

= ‘l_i.rg q(e)>/Ft (4.8)

is found to be u = tanh(hpfe/2)qd y/he where y is the rate of
incoherent relaxation in the biased two-state system [18].
The linear mobility g is related to the diffusion coefficient

D = lim {g* @)X/t (4.9)
(=0

of the untilted system (¢ = 0) by the Einstein relation

= D2kgT. 4.10)

In the high temperature limit one finds D = Dy, where Dy
= gy, and where y is the rate (3.7) describing incoherent
relaxation in a symmetric two-state system. Note that in this
limit both the mobility and the diffusion coefficient are of
order 42

As the temperature decreases, quantum coherence effects
leading to contributions to the mobility of higher order in
4* become increasingly important. Such contributions are
partly taken into account within a self-energy approach in
Refs. [31] and [32].

The formidable expression (4.5) can be summed if we in-
sert the high temperature formula (3.6) for the pair inter-
action S(t) [28]. The resuit for the linear mobility is
t= o[l -1YE], @i
where gy = q¢/2nhK). The function Io(y) is a modified
Bessel function, and
y = QuKhy/kyT)?, 412
and 7 is given by (3.7). The formula (4.11) is a consistent
result for temperatures for which y is order of unity or
smaller. Astonishingly, it also reproduces the correct zero
temperature result for the linear mobility y(T=0) = p, a
value obtained from a duality transformation between the
tight-binding limit and the weak corrugation case [33,30].

Thus, (4.11) is exact at T=0 and at high temperatures, and
reasonably interpolates between these cases in the inter-
mediate regime. However, it does not decribe the algebraic
low temperature corrections to-the zero temperature mo-
bility.

The low temperature expansion of the mobility is deter-
mined by the low temperature expansion of the pair inter-
action S(z). We may write S(t) = So(t) + Si(z), where S,(7)
is the zero temperature expression of (2.9) and where S;(7)
represents the contributions at finite 7. The leading low
temperature correction is given by ‘

() = K—’;i ({F)z +0 ((L>4) @.13)
Thus we obtain from (4.2) ‘
G =G {1 - K—’;G‘%ZY [;gml g :,]2 + 0(7“)}. (4.14)

Substituting (4.14) in (4.5) we see that the second term in
the curly bracket of (4.14) can be generated by differentiation
with respect to the bias. In the end we find for the mobility
in the region K < 1 the asymptotic expansion

_ - T kBT)z 1 9?
WT)=puT=0+ K 3 ( P ey

@.15)
C(ep(T = 0) + 0(TY).

The leading temperature dependence is given by a T2-power
law and the numerical factor in (4.15) is exact for arbitrary
bias and for all K < 1.

It is interesting to note that if one evaluates the second
moment {q*(¢)> with the pair interaction (3.6) one finds for
the diffusion coefficient (4.9)

ke T
nhK

D=gq RESVADIR (4.16)

Comparing (4.16) with (4.11) we sec that the Einstein relation
(4.10) is satisfied in all orders in 4% As the temperature
decreases the diffusion coefficient goes through a maximum
[26], and it approaches zero as T— 0. Thus, the system
shows subdiffusive behavior at T = 0. It can be shown quite
generally that for K < 1 and T'= 0 the second moment be-
haves as {q*(t)) ~ Int as t— co.

For the special case K = 1/2 the formal expression (4.5)
can be evaluated exactly for arbitrary 7, t and ¢ [28]. The
result for the nonlinear mobility is

u(l) = ;lo-z—ellmw(1/2+Izy/ukBT+ifte/21tknT), 4.17)

where 7 = (K = 1,2) = n4%(2w,). At high ten _eratures,
(4.17) simiplifies to the form discussed previously,

§= mn—Z-tanh(hﬁs/z), (4.18)
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and- at zero.temperature

YO — 2_ [ & 3
p(T=0)=u, - arctan(zjr). 4.19)

Thus, indeed; uy(T=0) = p. Also, it is easy to show that
thé asymptotic’low temperature behavior of u(7T’) in (4.17)
is exactly-in the form (4.15). Further, the diffusion coefficient
is given<by

2
D= -~ a}yy’ (1/2+hy/nkeT), (4.20)

which again vanishes at T = 0, and reduces to the previous
result D =.q¢y at high temperatures. At zero temperature,
the second moment is found to increase logarithmically only,
LG (1)) = (2/n*)q¢ In(2y1), as t— o0, Thus, the specific case
K = 1/2 reflects all of the gencral features discussed above.
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The dynamics of an impurity spin coupled to a spin-boson dissipative system is studied using the resolvent

expansion technque. In one particular physical realization the model simulates a highly anisotropic Kondo

system. The transverse correlation function of the impurity spin is calculated and the result obtained is

analyzed 1n various limiting cases. NMR lineshapes are also calculated for various temperatures which

are relevant in another physical realization of the model. Motional narrowing is observed at high tem-
perature.

1. Introduction

An example of current research interest in rate provesses
1n dissipative systems 15 found in the physics of 4 defect, such

Ber. Bunsenges. Phys. Chem. 95 (1991, No. 3
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as positive muon or hydrogen, tunneling between two trap
sites in a metal [1]. This example concerns the study of a
gquantum two-state system in countact with a thermal bath
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AI_thqugh\thé’lat{er"is,made ap of fe"n/nions, the low tem-
perature behaviour is dominated by low-lying excitations
off-the Fermii. surface which are approximately described by
bosons. This has motivated .the introduction of the_spin-
boson Hamiltonian that has been the focus of- mucp atten-
tion-in recent years [2]. The Hamiltonian, written as

H == %-_hd(;ox + 0,2): G)(by+bj")

(1.1)
+ ‘%“,hagj'b}*\b,,,
accompanied by the spectral function:
J(o) = (2/h?)§ll Gid(w—w) = Koe~?, (1.2)

provide a mapping of the two-state system in a fermijonic
bath to-a two-state system in contact with a bosonic bath.
In the above equations o’s are Pauli spin operators repre-
senting- the two-state system, 4, is the tunncling frequency,
by (bj*) is thé: annihilation (creation) operator for the jth
boson of freqiency w; and G; is the coupling constant, The
assumed form onthe spectral density given by the right most
term.of (1.2) describes what is known as Ohmic dissipation
parameterized by the dimensionless coupling constant K,
and the high frequency cut-off D,

The object of the present investigation is not tunncling
states in metals but the spin dynamics of an impurity spin
I coupled to a spin-boson Hamiltonian. What we study is
therefore a variant of the problem posed in (1.1) in that the
a’s now represent a real spin-half entity which in turn is in
interaction with another spin 1. The chosen Hamiltonian is
written as

1
# =3alo, --;-Mocx +0. %, Gylb;+b}")
7 (1.3

G?
+ J
* zj:hw,b, b +XJ: hay’

where a is a coupling parameter and the last term is a
counter-term that disappears upon a unitary transformation
on J (see below). We are interested in enquiring what
should be the -influence of the dissipative dynamics of ¢’s
on the spin dynamics of 1. In particular, we are interested
in calculating the transverse correlation function
Cux (1) = IO L)) (1.4)
where {...) denote statistical average.

A motivating factor behind formulating the Hamiltonian
in (1.3) is the interest in studying a highly anisotropic Kondo
system which is approximately described by (1.3) sans the
first term [2]. In this context ¢ represents the electronic spin
of the localized Kondo impurity whereas the spin-boson
part is taken to model the interaction between the localized
spin and the conduction electrons. The additional interac-
tion, represented by the first term of our model Hamiltonian,
is viewed to describe a uniaxial hyperfine interaction with
coupling constant a between the nuclear spin / and the elec-

. - N b < )
S. Dattagupta.and T. Qureshi:. Dynamics of an Impurity Spin Coupled to a Spin-Boson Dissipative System

troni¢ .spin ¢ of the impurity, A quantity such as C,,(¢)
would be relevant in interpreting resonance experiments c.g.
nuclear magnetic resonance in Kondo. like systems [3]. A
related quantity is also useful for analyzing other hyperfine
line-shapes as can be measured by tlie Mdssbauer and an-
gular correlation techniques [4]. It may be further men-
tioned that a stochastic version of (1.3) has been looked at
by Kehr and Kitahara-in which the authors consider the
depolarization of a positive muon tunneling: between two
sites which have oppositely directed magnetic fields [5].
The plan of.the paper is as follows. 'In §2 we set up the
method of calculating C,(t) based on the Hamiltonian
glven in (1.3). The method, which goes under the name of
“relaxation theory”, is only briefly sketched here as most of
the details are already given in our earlier paper on structure
factor calculation for tke spin boson model [6]. As shown
in [6], our approach is entirely equivalent to the dilute
bounce gas approximation within a functional integral for-
mulation of the problem [2,7]. In §3 we analyze the result
for the correlation function calculated in §2.

2. The Transverse Corrélation Function
2.1 The Preliminaries

We have argued earlier [6] that a convenient perturbative
treatment of the spin-bath coupling (i.e. the second term in
(1.3)) ensues upon making a unitary transformation of the
Hamiltonian:

H=SH#8! 2.1)
where S is a unitary operator defined by
S = exp (- a, ; (Gifhw) (b)— b,+)) . 2.2)

We obtain

H = %al,a,-%fmo(m o.+B.o,)
23)

+ ? h(l)}bj+ b,

where 0, = o, * io, and

Bt = exp< + 22} (G)/hw,)(b;— b,-*)). (24)

In terms of J# the transverse correlation function in (1.4)
may be written as

Cax®)=Tr (é LOT, (t)) @.35)
where

. __exp(—BA)

O = T fexp(— 0] ° 24
and

T.(t) = exp(#Z t) L 0) exp(—iF t). 2.7
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“We may furthér write

L) = U@ L©O) 238)
where
U(t) = exp(Le), 29

L being the Liouvillian, associated with J#. (The notations
_ used here are the same as.in [6]). Making 'the customary
- factorization approximation the density matrix g can be ex-

pressed as

@~ 050, (2.10)
where gs is the density operator for the spin system denoted
by the first term in (2.3) and gg is the density matrix for the
bath the Hamiltonian of which is given by the third term in
(2.3). This approximation is very good unless either the cou-
pling constant K or the temperature is very small. With this
the Laplace transform of C,, (t) is given by

Cal® = Tos (05 e UTrn s DN ) @.11)
where
U(z) = z-—liZ’ 2.12)

and Trg and Try represent the traces over the quantum states
of the coupled spin system (of 7 and o) and the bath re-
spectively, Denoting the states of 7 by the latin indices my
and my and those of ¢ by the Greek indices y and v, (2.11)
may be reexpressed as

Culd)= % |<m,|1xlmg)|2-%-s-2 exp(-—-%[}a,m,v)
ngmy v

* (mov,myv|(Tra{os U 2D mov',my v') (2.13)
where Zg is the partition function associated with gs. In
writing (2.13) we have used the fact that & is diagonal
amongst the states of 1.

2.2 Resolvent Expansion

Our strategy is to first evaluate the trace over the bath
states. Formally,

TralesU()] = [U (@] = Z <ntlopln) () TU()n'w)
(2.14)

where |1) denotes the occupation number states for the bo-
son operators and [nn) the “states” for the corresponding
Liouvillian (see [6]). Developing the interaction term, i.e.
the one associated with the second term in (2.3), as pertur-
bation and suitably rearranging terms up to the second or-
der, we have

0@k = !

z— lLS + [Ll(z _ILS - iLB)_lLI]aw’

(2.15)

-<{nos|n) <<5w- )

where -L; is the Liouvillian associated with-the interaction
Hamiltonian:

Hy = — %hAO(B+6_ +B_0.), (2.16)

and Ly is the Liouvillian associated with the bath Hamil-
tonian:

Hy = ); hwbit b, (2.17)

As we require the matrix elements of [U(z)],, amongst the
combined spin states of I and ¢ it is convenient first to

-tabulate the matrix elements of the self-energy given in (2.15).

Applying the properties of the Liouvillian, we find
oty |LLa(z = iLs~iLa)™" Lideulmopt,myv) = (/) T
Cunl#lyn’y nn’ | 4 ')

n z—i(E, — Ep)/h —i(nagmo — vayry)/2

+ 6T valtlnn’y Snw| Hfen>
M8 2 =i(Epe = En)[h —i(uaomy — naymy)/2

- unlBwn’y [ Hilve)
z—1(E, — E,)/h —i(agmy — vaymy)/2

— ey v'') | v )
z~i(E"— E™)/h — i(ua®m® — v'atm')/2

where E, is the eigenvalue of the bath Hamiltonian 5. The
next step is to plug in the explicit form of 2y (cf. (2.16)),
rewrite the denominators back in the form of integrals over
t and express the sum over the bath states (m,n’, etc) as
correlation functions for -bath operators. We find that the
matrix for z —iLg + [Ly(z —iLg —iLg)™"' Li]a, for a fixed
set of my and my and within the sub space of o, is block
diagonal with 2 x 2 blocks at the diagonal. This simplifies
the inversion that is required in order to obtain the matrix
elements for [U(2)],,. However, as is evident from (2.13), we
need focus on the upper left block in (2.18), and thus we find
(displaying only the upper left block) for the matrix of

(U@

(2.18)

74 -;—(aomo—a,ml) IR AN

1 S R E X AN N
Det (mo,n1y) @_ +24)+ &’_ +(22) 2 — =(agho— ayny)
+_54) + §oslen)

where the Det (my,m,) is given by 2.19)

Det(mp,m) =22 + z[p,_(z-) + ¢_, (z4)
4 §ho(Ea) + s )]

1 i
+ Z(aomo —aum) + i(aomo —aymy)

{[$-+(s) + 6L )]
— [P+ Fe_ )}

(2.20)




436

S. Dattagupta and°T. Qureshi: Dynamics of an Impurity Spin Coupled 0 a Spin-Boson Dissipative System

‘Here the fows and columns aré‘abelled by + +, — —, + —
and — + respectively, and

X
8.0 =28, B.). @21

Further, all primed quantities are obtained by replacing the
argument ¢ by —¢, and the hat denotes the Laplace trans-
form. It'may be stressed that the angular brackets in (2.21)
denote thermal averages governed by gp and the time de-
velopment of B, (t) is dictated by 2y alone. It may also be
noted that in writing the elements in (2.19) we have kept in
mind the possibility of the hyperfine constant taking two
distinct values a, and a, depending on whether the state is
my or my. This is particularly relevant in an experiment in-
volving the Méssbauer effect wherein the states my and m,
refer to the ground and excited states of the nucleus, On the
other hand, in the case of magnetic-resonance or angular
correlation experiments, 4, = a; = a [4].

Using the correlation function for the bath variables
within the Ohmic dissipation model we have shown earlier
that [6]

Gs~(2) = $_4(2) = § (2) = F(z) exp(inK);
P~ (2) = L (2) = ¢ (2) = F(2) exp(—irK),

2.22)

where
_ B [ 2n ¥~ I(1—2K) I (K+2zhp/2n)
F@O=7p (h/w) T(1—K-+zhp/2n)

(2.23)
I' in (2.23) denotes Euler’s gamma function.

2.3 Results for the Correlation Function

It is evident from (2.13) that the quantity of central im-
portance is the matrix elements of the averaged time-devel-
opment operator that may be denoted as

G, (2) = > i(:xp (1 fay m,)(mo vy v
w Zs 2

|(TrsLeal (@)D Imov',myv).

(2.24)

A knowledge of G, (2) is adequate for evaluating the line
shapes for different kinds of hyperfine spectra [4]. After a
bit of algebra we obtain

Specializing for the moment to NMR, and also for the sake
of simplicity to-the case I = 1/2, we find
. 1 at/4 )"’
Cald) = g (z I AF@smK))

(2.26)

3, Discussion of Results

In order to have a more physical appreciation of the re-
sults given in (2.32) and (2.33) it is useful to consider first

-certain limiting cases as enumerated below.

(i) The Case of Zero Damping: K=0
Eq. (2.26) now yields (cf. (2.23))

1 2 + 43

4 z(Z2 + A3+ %a)’

On the other hand, zero damping implies also that the spin

system is totally decoupled from its surroundings, in which
case the Hamiltonian in (1.3) is reduced to

Cxx (e = G.1)

1
KN ==alo, - ﬁ-Aoo'x.

2 2 42

Eq. (3.2) allows for a direct- calculation of the correlation
function in (1.4), which, after some straightforward algebra,
leads to (3.1).

(ii) The Overdamped and High Temperature Case

In this limit it is expected that the effect of cohercnce
(contained in the tunneling term in (2.3)) would be com-
pletely washed out, leading to total incoherence. Another
way of saying the same thing is to look at (1.3) and argue
that in the present situation, the system-bath coupling would
move the spin in the x-direction, i.e,, o, so rapidly that its
effect would be averaged out. This phenomenon is, therefore,
very similar to “motional narrowing” in magnetic resonance
(31

H the effect of the tunneling term disappears from (1.3)
one is left with just a “static” Hamiltonian:

(33)

H = %a I,a, -+ ; h(()jb';b).

It is now rather trivial to calculate directly the correlation
function of (1.4) and one obtains

1 (exp(—aﬂ/4)
8cosh(aff/2) \ z + iaf2h

Cecle) = z — iaf2h

exp(ap/4 )

(3.4
It i~not so easy to show how the general expression of (2.26)
reauces to (3.4) analytically, but it is certainly possible to
demonstrate this fact numerically, as exhibited in Fig. 1.

1
Gmwn(z) = '—(Z 4
2

! (dotig — aymy )2 — (apny — aymy) (F(z4) — F(z..))sin(nK))'1
z + 2(F(z,) + F(z-))cos(n K)

(2.25)

itanh (4 Baymy)(agnty — aymy /4

+ 22+ 2z (F(z4) + F(z_))cos(rK) + % (apmy — aymy > = (aghty — aymy) (F(z..) ~ F(z ) sin(mK) *
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Fig. 1

NMR lineshape based on (2.26). For convenience we have intro-
duced a new temperature t = 2n/hf. The Laplace transform vari-
able z is cet cqual to iw+ /2 where T has.been fixed at 0.4 in
order to account for a possible instrumental width. The temperature
7 is fixed at.5, 4y at 0.25, a at 1.0 and the cutofl D at 100. We plot
the lineshape /(w) = C(z). The solid line corresponds to K =0.2,
the dashed line to K'=0.05 and the dotted linc to X =001
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Fig. 2
NMR line shape for K=0.05, D =100, 44=025, a=1.0 and
I' =0.2 for various values of the temperature 7 (1 for the dotted
line, 5 for the dashed line and 15 for the solid line)

(iii) The Case of High Temperature

An increase in temperature also leads to incoherence but
not to that large an extent as discussed under case (ii). Here
one may neglect the f-dependent terms in the argument of
the gamma functions appearing in (2.23), and show that

1_ z+7Kp
4 2+z9(Kp+Lat’

Cuxle) = 3.5)

where

2 2K ~1 _
(&) = —4—1;—( hi;;)) F(lr(fl—()lg(K) cos(nK).

(36)

In this limit it is reasonable to argue that the physics of the
problem is equivalent to that described by an effective sto-
chastic model Hamiltonian;

H() = LAQ), 3.7)

where 4(¢) is a two-state jump process having two possible
values + a/2 and —a/2. Such a process is a special class of
Markov processes and leads to a lineshape expression that
agrees completely with (3.5) [4].

(iv) Numerical Plots

Finally we present, in Figs. 1 and 2, a series of plots based
on numerical computations of (2.26) in various domains of
interest, most of which have been covered already under
(1) —(iii) above. As one can see, very weak damping leads to
three resonance lines, the central peak corresponding to an
effective field component the nuclear spin / “sees” in the x-
direction. When the *emperature increases this component
disappears because of incoherence. Finally, as damping also
gets to be large the two-reasonance lines get completely
“motionally narrowed”.

We would like to thank the Department of Science and Tech-
nology, and the University Grants Commission, Government of
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Hydrogen interstitials in Nb are trapped by O or N impurity atoms below ~ 160 K. The trapped hydrogen
occupies two nearest-neighbor tetrahedral sites. It represents, therefore, a model system for experimental
studies of the tunneling dynamics of a particle in a double-well potential. The tunneling dynamics of the
trapped hydrogen was investigated by ncutron spectroscopy -in the temperature range between 0.05
and 160 K. The experiments demonstrate the transition from a low-temperature coherent tunneling
(T < 10 K) to an incoherent jump diffusion at elevated temperatures (T > 10 K). Up to ~60 K, both
coherent tunneling and jump diffusion is controlled by a nonadiabatic coupling of the hydrogen to
conduction electrons (Kondo's coupling constant X = 0.055 + 0.005). Above ~60 K, the jump diffusion
of the hydrogen is increasingly dominated by an interaction with phonons,

1. Introduction

The decisive role of tunneling in low-temperature diffu-
sion processes of hydrogen interstitials in metals is well es-
tablished since more than two decades [1,2]. This holds
especially for hydrogen diffusion in bce metals such as V,
Nb-and Ta where the distances between the (tetrahedral)
interstitial sites occupied by the hydrogen are smaller (about
1.1 A) than in most of the other metal-hydrogen systems.
The tunneling matrix elements of the hydrogen are, there-
fore, particularly large. An important progress in our un-
derstanding of the tunneling dynamics of the hydrogen was
the recent observation that this dynamics is strongly affected
by a nonadiabatic interaction with the conduction electrons
of the host metal, This nonadiabatic effect, which is ignored
within the conventional adiabatic or Born-Oppenheimer ap-
proximation, means specifically that the tunncling dynamics
of the hydrogen interstitials in a metal cannot be explained
by solely considering interatomic lattice potentials. The non-
adiabatic influence of conduction electrons on the motion
of the interstitial hydrogen was first demonstrated 1984 in
low-temperature ultrasonic experiments on hydrogen in Nb
by Wang et. al. [3]. In the same year, nonadiabatic elec-
tronic effects were also proposed by Kondo and Yamada
[4,5] as a mechanism to understand the previously unex-
plained temperature dependence observed for the diffusion
rate of muons in Al and Cu (the muon can be considered
to represent a light hydrogen isotope).

This paper summarizes the results of recent neutron spec-
troscopic measurements which investigated the tunneling of
hydrogen interstitials in Nb which were trapped below
~160 K by (immobile) O or N impurity atoms under for-
mation of O—H or N—H pairs [6-10]. In this case, the
trapped hydrogen occupies a double-well putential which
consists of two neighboning tetrahedral interstitial sites
whith a.distance of ~1.17 A. The tunneling of the trapped
hydrogen in Nb represents, therefore, the simplest situation
possible for a quantum transport, namely that in a double
well potential. It is, at the same time, the situaticn for which
the influence of nonadiabativ effects was intensively inves-
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tigated in recent years (see [4,5,9,11 —18], and references
therein). The experiments were performed in the temperature
range between 0.05 and 160 K, and on Nb samples with
O—H or N—H pair concentrations up to 1.1 at%. They
demonstrate, at ~10 K, the transition from a low-temper-
ature coherent tunneling with two well-defined and ener-
getically splitted eigenstates (inelastic neutron spectra) to an
incoherent high-temperature jump diffusion of the trapped
hydrogen (quasielastic spectra). The observed tunneling dy-
namics is, up to ~60 K, consistently and quantitatively
described solely by a nonadiabatic interaction between the
conduction electrons and the hydrogen (the adiabatic inter-
action with phonon modes effects only a temperature-in
dependent renormalization of the tunnel splitting), The di-
mensionless Kondo parameter, which characterizes the
strengh of the nonadiabatic interaction, was determined to
be K = 0.055 £ 0.005. Above ~ 60 K, finally, the adiabatic
influence of the phonons becomes important and dominates,
in fact, the tunneling dynamics of the hydrogen.

The trapping of H in Nb by O or N impurities — and
thus the formation of O—H or N—H pairs — provides a
unique possibility of investigating transport processes of hy-
drogen interstitials in metals even at low temperatures
where, in the absence of traps, the hydrogen is immobile
because of precipitation [19,20]. The transport process in
this case is a coherent tunneling or an incoherent (local)
jump diffusion of the hydrogen between two neighboring
tetrahedral interstitial sites that form the double-well po-
tential in which the trapped hydrogen is located. It is worth
pointing out that such a locally resticted transport process
is described by the same theoretical concepts as ordinary
long-range diffusion. Further, the fact that Nb is a super-
conductor with the (relatively) high transition temperature
of 9.2 K will be found of great advantage for the present
experimental investigation.

An important aspect of the tunneliag behavior of the
trapped hydrogen is the occurrence of an asymmetry energ)y
between the two interstitial sites of @ given hydrogen iater-
stitial due to 1andum (tativ) lattice strains induced by sur-
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rounding O—H or N—H pairs [21,22]. The asymmetry
energies increase with rising pair concentration, and they
réach typical values of several meV for concertrations in

the-at% range [22]. The influence of the asymmetry energies

wiil explicitly be considered within the discussion of the
neutfon spectroscopic results.

2, Samples and Experimental Detiils
The measurements were carried out on three Nb(OH),

-samples with x = 0.0002, 0.002 and 0.011, and on ‘three

Nb(NH]), samples with x = 0,0005'and 0.004 (two samples).
The techniques applied for sample preparation and analysis
are described in [6,7,10,22]. The neutron spectra were
taken with the time-of-flight spectrometer IN 6 at the In-
stitute Laue-Langevin in Grenoble.

{%of elastic peak])
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Neutron spectra of a Nb(OH)yp: sample.at 0.2 K (a) and 4.3 K
(b) [6,9]. For both temperatures, the spectra were taken in the
superconducting (0T) and normal conducting (0.7T) clectronic state.
The thick and the thin solid lines represent fit curves for the total
and the inelastic scattering intensity, respectively, The broken lines
are for the elastic intensity

3. Experimental Resuits and Discussion
3.1, Coherent Tunneling Regime Below ~10 K

Fig. 1 presents four neutron spectra measured-from the
Nb(OH)ga2 sample at 0.2 K (Fig.1a) and 4.3 K (Fig.1b) [6].
Both temperatures are well below the superconducting tran-
sition temperature of 9.2 K for the investigated sample, For
this reason, spectra could be taken in both the supercon-
ducting and the normal conducting electronic state where
the latter state was achieved by application of a magnetic
field of 0.7 T. The top and bottom spectra in Fig. 1 represent
the results for superconductivity (0T) and normal conduc-
tivity (0.7T), respectively. It can be secen that both spectra
taken in the superconducting state show a clearly idenufi-
able inelastic line at ~0.2 meV. This demonstrates a coher-
ent tunneling behavior with two well-defined eigenstates due
to a delocalization of the hydrogen between two interstitial
sites, and a value of J, ~ 0.2 meV for the (renormalizzd)
tunnel splitting between the two states. In the normal con-
ducting state, the inclastic lines show 4 center shift and a
broadening at 0.2 K, a1d a transition to an almost quasi-
elastic behavior at 4.3 . These distinct differences between
superconductivity and normal conductivity demonstrate the

influence of nonadiabatic electronic effects since phononic
effects are. not expected to depend noticeably on the elec-
tronic state.

For a quantitative discussion of the results, the measured
spectra were fitted to a scattering-law that presupposes a
coherent tunnviing of the hydrogen because of a delocali-
zation between its two interstitial sites [6,9,13—18]. The
two relevant fit parameters were the temperature-dependent
tunnel splitting J(T') between the two eigenstates of the hy-
drogen and a (temperature-dependent) relaxation rate y(7T)
which describes the (reciprocal) lifetimes of these statés, The
damping characterizes also the broadening of the inelastic-
lines of